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Abstract

A great deal of progress has been made in the modeling of aerodynamically gener-
ated sound of rotors over the past decade. Although the modeling effort has focused
on helicopter main rotors, the theory is generally valid for a wide range of ro-
tor configurations. The Ffowcs Williams–Hawkings (FW–H) equation has been the
foundation for much of the development. The monopole and dipole source terms of
the FW–H equation account for the thickness and loading noise, respectively. Blade-
vortex-interaction noise and broadband noise are important types of loading noise,
hence much research has been directed toward the accurate modeling of these noise
mechanisms. Both subsonic and supersonic quadrupole noise formulations have been
developed for the prediction of high-speed impulsive noise. In an effort to eliminate
the need to compute the quadrupole contribution, the FW–H equation has also been
utilized on permeable surfaces surrounding all physical noise sources. Comparisons
of the Kirchhoff formulation for moving surfaces with the FW–H equation have
shown that the Kirchhoff formulation for moving surfaces can give erroneous results
for aeroacoustic problems. Finally, significant progress has been made incorporating
the rotor noise models into full vehicle noise prediction tools.
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1 Notation

2 wave operator, 2 =
1

c2

∂2

∂t2
−∇2

c sound speed in quiescent medium
f = 0 function that describes the source surface, e.g., a rotor blade
g = τ − t + r/c
H(f) Heaviside function, H(f) = 0 for f < 0 and H(f) = 1 for f > 0
`i components of local force intensity that acts on the fluid,

`i = Pijnj

`r `ir̂i

˙̀
r

˙̀
ir̂i

M local Mach number vector of source with respect to a frame fixed
to the undisturbed medium, with components Mi

Ṁi ∂Mi/∂τ
M |M|
MAT advancing-tip Mach number
MH hover tip Mach number
Mn Mach number in direction normal to the surface, Min̂i

Mr Mach number of source in radiation direction, Mir̂i

Ṁr Ṁir̂i

n̂ unit outward normal vector to surface, with components n̂i

p′ acoustic pressure, p− po in undisturbed medium; p′ ≡ c2ρ′ on LHS
of Lighthill and in FW–H equations

Pij compressive stress tensor
Qij far-field quadrupole tensor, defined in equation (52)
r distance between observer and source, r = |x− y|
r̂ unit vector in the radiation direction, with components r̂i;

r̂ = (x− y)/r

R rotor radius
dS element of the rotor blade surface
t observer time
Tij Lighthill stress tensor, ρuiuj + Pij − c2ρ′δij

ui components of local fluid velocity
vn local normal velocity of source surface
VH helicopter velocity

vṅ vi
˙̂ni

v̇n v̇in̂i

x observer position vector, with components xi

y source position vector, with components yi

Greek symbols:
δ(f) Dirac delta function
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δij Kronecker delta, δij = 1 for i = j, otherwise δij = 0
dΓ element of length of the Γ-curve (intersection of collapsing sphere

and f = 0).

Λ
√

1− 2Mn cos θ + M2
n

µ advance ratio
Ω rotor angular velocity
dΩ element of surface area of the collapsing sphere g = 0
ρo density of quiescent medium
ρ′ density perturbation, ρ− ρo

dΣ element of surface area of the influence surface
F (y;x, t) = f(y, t− r/c)

θ angle between the normal direction n̂ and the radiation direction r̂
τ source time

Subscripts:
ret quantity is evaluated at the retarded time, τ = t− r/c
o denotes fluid variable in quiescent medium
L loading noise component
T thickness noise component
Q quadrupole noise component

Note: Summation convention is used in this paper with the exception of Trr =
Tij r̂ir̂j and Qrr = Qij r̂ir̂j.

2 Introduction

Noise has been an undesirable byproduct of aerospace vehicles from the time
of early aircraft until now. Originally, aircraft noise was not much of an is-
sue because of the overarching requirement of improving vehicle performance.
As aerospace technology has matured, more resources have been devoted to
the reduction of aerodynamically generated sound. With the present level of
aerospace technology maturity, both the public and regulatory bodies have
focused their concern on safety, emissions and noise rather than either perfor-
mance or efficiency. 2 This situation is really a credit to the success of past
generations of aerospace designers and engineers. The challenge is that antic-
ipated increases in the use of air travel will also bring unacceptable increases

2 The military still focuses primarily on performance with less emphasis for noise
than their civilian counterparts. Thus civil vehicles with military origins often do
not have the same degree of noise control incorporated into their designs as civil
rotorcraft.
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in aircraft noise—if nothing is done. Fortunately, a great deal of progress has
been made both in understanding the noise-generation mechanisms and in de-
veloping first-principles models for prediction of the sound. However, the use
of this knowledge in the reduction of aircraft noise has been less successful.

Rotorcraft are inherently complex aeromechanical vehicles, and hence have
lagged fixed-wing aircraft in the understanding of the mechanisms responsi-
ble for rotor noise and the development of accurate and efficient prediction
methods based upon the fluid physics (as opposed to empirical methods).
Furthermore, fixed-wing aircraft can benefit from both source noise reduction
and noise control through features such as engine duct liners. Rotorcraft do
not have this luxury and must rely almost entirely on source noise reduction.
A number of high quality experimental tests, concentrated national research
programs and rigorous theoretical developments have greatly expanded both
our understanding of rotor noise sources and our ability to predict main rotor
noise. The maturation of computational fluid dynamics (CFD) and its appli-
cation to rotor aerodynamics has been an enabling step necessary for accurate,
first-principles noise prediction. Nevertheless, rotor aerodynamics is often one
of the weak links leading to unsatisfactory acoustic computations.

In this article, the focus will be on the aerodynamically generated sound of
main rotors and the recent advances in rotor noise prediction. In 1994, the
authors published a status report on helicopter noise prediction [1]. That re-
port provides a historical perspective and method assessment that is a useful
backdrop for this article. The goal of the present article is two-fold: 1) to give
a concise historical and theoretical background of the modeling of aerody-
namically generated sound of helicopter rotors and 2) to highlight significant
theoretical and computational developments that have been completed since
1994. Emphasis is placed on both theoretical development and numerical in-
terpretation because these elements help to explain the reasons why various
computational methods were selected. This article does not focus on the rel-
ative magnitude of the various noise sources even though this an important
aspect of rotor noise prediction that depends both on rotor size and operating
environment. Although the primary focus of the article is on source noise pre-
diction, system noise prediction is also recognized as an important area that
has also seen significant progress over the last decade. Therefore a brief dis-
cussion of rotorcraft system noise prediction is included. This article focuses
primarily on the rotor noise prediction work at NASA Langley Research Cen-
ter: however, an attempt has been made to include significant contributions
of other researchers.
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3 Background and Historical Perspective

The operating environment of a helicopter rotor is extremely complex and
fundamentally unsteady (as shown in figure 1). The rotor blade on a helicopter
in forward flight with speed VH experiences high-speed flow on the advancing
side of the rotor (advancing-tip speed Vadv. = ΩR + VH) and significantly
lower-speed flow on the retreating side of the rotor (retreating-tip speed Vret. =
ΩR− VH). The difference in velocity on the advancing and retreating sides of
the rotor is managed through lateral cyclic pitch control so that the lift of the
rotor is balanced from side to side. Longitudinal cyclic pitch control is used to
change the rotor tip-path plane which in turn generates thrust to propel the
helicopter forward. The aerodynamic and dynamic forces acting on the rotor
further lead to both out-of-plane (flapping), in-plane (lead-lag) and bending
motions of the rotor blade. Finally, the rotor operates very close to its own
wake, hence the wake is much more important in rotor aerodynamics than in
fixed-wing or propeller aerodynamics. [Fig. 1

about
here.]

3.1 Physical Sources of Rotor Noise

This complicated aeromechanical environment contributes to both discrete fre-
quency and broadband aerodynamic noise generation through several distinct
noise mechanisms. Discrete-frequency noise is usually divided into the deter-
ministic components of thickness and loading noise, blade-vortex interaction
noise 3 and high-speed impulsive noise. Similarly, broadband noise consists of
the non-deterministic loading noise sources classified as turbulence ingestion
noise, blade-wake interaction noise and blade self-noise. Although tail rotor
noise may be subjectively even more important than main rotor noise, it has
not received much attention from the noise modeling community and will not
be addressed in any significant way in this article. Much of the theoretical
development for main rotor noise is applicable to tail rotors, however. Other
exterior noise sources, such as engine noise, and interior noise sources, such
as drivetrain and gear noise, are also important rotorcraft noise sources, but
they are not considered here.

Thickness noise and loading noise, known together as rotational noise, are re-
lated to linear aerodynamic theory. Thickness noise is due to the displacement
of the fluid in the flow field by the rotor blade while loading noise is caused
by the accelerating force on the fluid generated by moving blade surface. The
term “loading noise” is usually a reference to the harmonic noise from nonim-
pulsive loading sources, whereas impulsive loading noise due to blade-vortex

3 Blade-vortex-interaction noise is a specific type of loading noise that is extremely
annoying when it occurs.

6



interaction (BVI) and non-deterministic loading associated with broadband
noise are treated separately.

Blade-vortex interaction noise (known earlier as blade slap) is the result of a
shed tip vortex subsequently interacting with a following blade, while broad-
band noise is the result of blade loading associated with turbulent flow on or
near the blade surface. Turbulence ingested into the rotor can produce both
discrete-frequency and broadband noise. This turbulence can occur naturally
in the atmosphere or come from blade wakes. Blade self-noise generation is by
turbulent phenomena occurring on the blade itself. Random pressure fluctua-
tions on the blade surface result from turbulence within attached or separated
boundary layers. Other self-noise mechanisms include tip vortex formation,
laminar vortex shedding and trailing edge noise.

At high advancing-tip speeds, the rotor generates an impulsive noise of high
intensity with in-plane directivity. The peak level of the noise is in the region
forward of the helicopter. This noise, known as high-speed impulsive noise,
is associated with the transonic flow around the blade. Figure 2 shows the
typical directionality of each of various types of rotor noise. [Fig. 2

about
here.]

3.2 Early Theoretical Developments

In order to put the more recent advances in helicopter noise prediction in
to a proper perspective, it is helpful to recall that by the late 1930’s it was
known that for rotating blades, both the blade loading and the blade thickness
could generate noise by separate mechanisms. Gutin [2] obtained the first
theoretical result for calculation of the level of harmonics of propeller noise
due to blade loads. Demming [3] and Ernsthausen [4] worked independently
on the problem of thickness noise. Garrick and Watkins [5] extended Gutin’s
result to propellers in forward flight in the early fifties. Most of this early work
focused on propellers because the helicopter was still in its infancy.

By the 1960’s the noise of helicopters became an important issue. Initially
both the piston engine and the rotor were the major generators of noise,
but with the introduction of the turboshaft engine, the main and tail rotors
became the dominant external noise sources. It was realized that unsteady
blade surface pressure fluctuations were largely responsible for the discrete and
broadband noise of the rotors. However, the acoustic theories developed earlier
for propellers were only applicable to hovering rotors because they did not
include the unsteady blade loading. In practice, a hovering rotor has significant
unsteady loading, hence, the propeller acoustics theories were inadequate even
for hover.

Some of the first noise prediction theories applied specifically to helicopter
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rotors were developed by Lowson [6] and Wright [7]. Lowson and Ollerhead [8]
also developed a computer code for rotor noise prediction both in the time
and frequency domains. The lack of computer power at the time and the
limited understanding of the role of the blade surface pressure distribution
led these researchers to use compact source calculations. It is interesting to
note that the thickness noise of rotors was largely a neglected subject of the
1960’s. Nevertheless this period was marked by systematic experimental and
theoretical study of the source mechanisms of helicopter rotors [9, 10].

3.3 The Ffowcs Williams – Hawkings Era

In 1969 Ffowcs Williams and Hawkings published their now classic paper
“Sound Generation by Turbulence and Surfaces in Arbitrary Motion” [11]
which generalized Lighthill’s acoustic analogy approach [12] to include the
effects of very general types of surfaces and motions. Using the mathematical
theory of distributions (also known as generalized functions), they were able to
rearrange the Navier-Stokes equations into the form of an inhomogeneous wave
equation with a quadrupole source distribution in the volume surrounding
the body and monopole and dipole sources on the body surface. The Ffowcs
Williams – Hawkings (FW–H) equation can be written in differential form 1

as

2p′(x, t) =
∂̄

∂t

[
ρovnδ(f)

]
− ∂̄

∂xi

[
`iδ(f)

]
+

∂̄2

∂xi∂xj

[
TijH(f)

]
(1)

where vn is the local velocity of the body in the direction normal to the surface
implicitly defined by f = 0, li are the components of the local force on the
surface, Tij is the Lighthill stress tensor and δ(f) and H(f) are the Dirac delta
and Heaviside functions, respectively. The beauty of the generalized function
approach is that all of the manipulations are completely rigorous and ad hoc
reasoning is not required.

The effect of Ffowcs Williams and Hawkings paper was to encourage theoret-
ical work on helicopter rotor noise in the 1970’s. Hawkings and Lowson [13]
and Farassat [14–16] were among the first groups of researchers applying the
FW–H equation to the problem of rotor noise prediction. Thickness noise was
proposed as the source for the phenomenon of high-speed blade slap, now
known as high-speed impulsive noise. Later Schmitz and Yu [17] and Hanson
and Fink [18] discovered that this conclusion was only partially correct. The

1 Ffowcs Williams and Hawkings actually wrote this equation in terms of the den-
sity perturbation, ρ′. Following the notation used by Farassat, p′ is used on the
left side of the equation rather than c2ρ′. While p′ differs from the acoustic pres-
sure near the source region, outside the source region linear wave propagation is
expected, hence p′ = c2ρ′.
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noise from the quadrupole source had to be added to the thickness noise cal-
culations to fully account for high-speed impulsive noise. Efforts to calculate
rotor noise in forward flight using noncompact source descriptions were initi-
ated in both the U.S. and abroad. Most of this work was directed toward the
prediction of discrete-frequency noise.

Even though computational work followed the theories in the seventies, com-
puters were only beginning to have the necessary power for routine compu-
tations. This lack of computational power limited acoustic code development
and is the origin of some of the approximations in current codes. Aerodynamic
theories also were not sophisticated enough at this time to satisfy the input
requirements of acoustic codes. This situation was beginning to change by the
end of the decade, especially at NASA Ames which enjoyed the lead in super-
computing technology. The computing power available to Yu, Caradonna and
Schmitz [17,19] is at least partially responsible for their demonstration of the
importance of the quadrupole source in the FW–H equation. The quadrupole
was neglected in most theories because of the lack of information about the
flow field around the rotor. George [20] and Schmitz and Yu [21] reviewed the
status of helicopter noise in the late 1970’s and the early 1980’s, respectively.

By the 1980’s, the emphasis on theoretical development combined with several
model scale and flight tests had led to a fairly complete understanding and
classification of the physical sources of helicopter rotor noise [21]. This did
not immediately translate into an ability to predict these sources, however.
The threat of noise certification and regulation forced the U.S. helicopter in-
dustry into the unfamiliar 4 position of collaborating in their development of
a “design for noise” capability. NASA [22] organized and led the cooperation
between the four major U.S. manufacturers 5 through the NASA/AHS Rotor-
craft Noise Reduction Program, (NR)2. The (NR)2 program improved the U.S.
prediction capability in several ways. 6 Each of the four companies increased
their acoustic staff and enhanced their acoustic facilities. The program also
encouraged the participation of rotor aerodynamicists and fluid mechanicians
in rotor acoustics. The increased emphasis by government and industry was
well timed to build on the theoretical developments of the previous decade,
hence prediction codes resulted from the effort.

In parallel with the (NR)2 program were several high quality acoustic tests
conducted in the newly opened German-Dutch wind tunnel (DNW 7 ) [23–27].

4 Unfamiliar because the rotorcraft industry had not seriously considered noise in
rotorcraft design up to this point.
5 Bell Helicopter Textron, Inc., Boeing Helicopters, McDonnell Douglas Helicopter
Company and Sikorsky Aircraft
6 This work also indicated that much more work was required to give the necessary
accuracy for routine prediction.
7 Duits-Nederslandse Windtunnel.
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These tests greatly aided the prediction work by concentrating on individual
source mechanisms and clarifying the understanding of the physical mecha-
nisms. Advances due to the (NR)2 program, the DNW experimental efforts
and increases in computer power, have greatly improved the current state of
helicopter noise prediction.

4 Theoretical Background: The Ffowcs Williams – Hawkings Equa-
tion

The problem of aerodynamically generated sound is governed by the conserva-
tion laws of mass, momentum and energy for a fluid. The FW–H equation [11]
is an exact rearrangement of the continuity equation and the Navier–Stokes
equations into the form of an inhomogeneous wave equation with two surface
source terms and a volume source term. The FW–H equation is the most gen-
eral form of the Lighthill acoustic analogy [12] because it extends the analogy
to include general surfaces in arbitrary motion. The FW–H equation is the
appropriate tool for predicting the noise generated by the complex motion of
helicopter rotors. Today almost all deterministic rotor noise predictions are
based on time-domain integral formulations of the FW–H equation.

In this section, the FW–H equation will be examined to provide the back-
ground necessary to understand current rotor noise prediction models. First,
the derivation of the partial differential equation form of the FW–H equation is
presented along with a brief explanation of the underlying mathematical the-
ory of generalized functions. This is followed by an interpretation of the source
terms and a brief description of some of the important integral formulations
of the FW–H equation.

4.1 Derivation

The derivation of the FW–H equation follows the same steps as Lighthill
used to derive his acoustic analogy for jet noise [12], yet is applicable to a
wider range of problems because of its use of generalized function theory (i.e.,
theory of distributions). The fundamentals of generalized function theory will
be presented, followed by the derivation of the FW–H equation.

4.1.1 Preliminaries

The FW–H equation may be derived by embedding the exterior flow problem
in unbounded space, i.e., by extending the definition of the fluid properties
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such that inside the moving surface the flow parameters have the same fluid
state as the undisturbed medium. The flow parameters will then have arti-
ficially introduced discontinuities across the moving surface. Since we need
the derivatives of these parameters in conservation laws, generalized function
theory is the ideal tool for this problem. The fundamentals of this theory for
application to aeroacoustics and aerodynamics are presented in two works by
Farassat [28,29]. We highly recommend the books by Gel’fand and Shilov (Vol-
ume 1) [30], Jones (2nd edition) [31] and Kanwal [32] for the more advanced
aspects of generalized function theory.

To learn and apply this theory requires considerable mathematical maturity.
Nevertheless, we believe that a basic understanding of generalized differentia-
tion will be sufficient to follow the derivation of the FW–H equation. We will
give the formulas for generalized differentiation of discontinuous functions.
Other important facts related to this subject that we use in this paper are:

(1) Conservation laws of mass continuity and momentum equation (written
in conservative form known as the Reynolds form) are valid for fluid
flows with real and artificial discontinuities if we interpret all derivatives
as generalized derivatives.

(2) The Green’s function approach can be used to find discontinuous solu-
tions of differential equations provided that the problem is set up in the
generalized function space.

We now give some results for generalized differentiation of discontinuous func-
tions. Let h(x) be a function that is piecewise smooth with a discontinuity at
xo and a jump of ∆h = h(xo+)− h(xo−) at this point. We use a bar over the
derivative symbol to denote generalized differentiation. Then the generalized
derivative of h(x) is defined as

d̄h

dx
= h̄′(x) = h′(x) + ∆hδ(x− xo) (2)

where h′(x) is the ordinary derivative of h(x). Here δ(x) is the Dirac delta
function. One significant fact to remember about generalized differentiation is
that for all x such that a < xo < x, we have:

x∫

a

d̄h

dx
dx = h(x)− h(a) 6=

x∫

a

h′(x)dx. (3)

This means that h̄′(x) retains the memory of the jump at xo but h′(x) does
not. To illustrate this result, we consider the Heaviside function

H(x) =
{ 0 x < 0

1 x > 0
(4)
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We have H ′(x) = 0 and ∆H = 1 at x = 0, therefore,

H̄ ′(x) = δ(x) (5)

It is seen that for a < 0 and any x

x∫

a

H̄ ′(x)dx =

x∫

a

δ(x)dx = H(x) (6)

which is not the same as
x∫

a

H ′(x)dx = 0 (7)

Equation (2) describes the extension of the differentiation process in general-
ized function theory. This fact is one of the main reasons for the success of
this theory in working with discontinuous functions. In short, the machinery
of generalized function theory makes it just as easy to work with discontin-
uous or nonsmooth functions as working with smooth functions in classical
analysis.

Now let q(x) be a function of x = (x1, x2, x3) with a discontinuity across the
surface f(x) = 0. Let us define the jump ∆q of q(x) across f = 0 as follows:

∆q = q(f = 0+)− q(f = 0−) (8)

Note that ∆q is a function of position on the surface of discontinuity f = 0
and ∇f points into the region f > 0. The generalized partial derivative of
q(x) with respect to the variable xi is

∂̄q

∂xi

=
∂q

∂xi

+ ∆q
∂f

∂xi

δ(f) (9)

where δ(f) is the Dirac delta function. Here ∂q/∂xi is the ordinary partial
derivative of q(x). From equation (9), the generalized gradient of q(x) can be
written as

∇̄q = ∇q + ∆q∇fδ(f) . (10)

(For the generalized divergence and curl of discontinuous vector functions see
Farassat [28, 29].)

A useful result for the integration of δ(f) is the following:

∫
Q(x)|∇f |δ(f)dx =

∫

f=0

Q(x)dS (11)

where Q(x) is an arbitrary function. The integral on the right of equation (11)
is a surface integral over the surface f = 0 with Q(x) evaluated on the surface.
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Another important fact to remember is that the order of operations can be
exchanged when working with generalized functions:

∂̄2Q(x)

∂xi∂xj

=
∂̄2Q(x)

∂xj∂xi

(12)

∂̄

∂xi

∫
Q(x,y)dy =

∫ ∂̄

∂xi

(
Q(x,y)

)
dy (13)

where in equation (13) the limits of the integrals are not functions of the
variable xi. This property is one of the most useful and powerful properties
of generalized functions. It is often used in applications without the need for
justification as required in classical analysis, thus speeding up the process of
solving mathematical problems.

It is the experience of the authors that with some effort, engineers and students
can get a good working knowledge of generalized function theory without the
need to learn all the highly abstract mathematical foundations. However, we
give two observations here to help readers interested in learning more about
generalized function theory:

(1) Although generalized function theory of one variable is very useful in
applications such as signal analysis, in acoustics we need the theory for
multidimensional spaces (usually 2, 3 or 4 dimensional spaces). Most
books, however, do not emphasize multidimensional theory. The excep-
tions are Gel’fand and Shilov [30], Kanwal [32] and Jones [31]. In the
multidimensional case, one also needs a working knowledge of differential
geometry at the level of Struik [33] and general tensor analysis [34, 35].
Farassat has included all of the necessary background theory and results
for applications in aeroacoustics and aerodynamics in two NASA publi-
cations [28,29].

(2) Generalized function theory has substantially extended the power of the
classical analysis in solving mathematical problems, particularly those
involving ordinary or partial differential equations. Often the solution is
transparent when generalized function theory is used, while obtaining the
solution using classical analysis is obscure or very difficult. For this reason,
we remind the reader that generalized function theory is an indispensable
tool for solving theoretical engineering problems.

4.1.2 The Ffowcs Williams–Hawkings Equation

Now we utilize generalized function theory to derive the FW–H equation. Let
f(x, t) = 0 be a moving surface enclosing the noise generating region of the
flow, possibly including solid surfaces such as rotor blades. We will refer to
f(x, t) as a data surface for the reason that becomes clear below. We are
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interested in computing the sound field in the exterior of the data surface.
We assume that f > 0 in the exterior of the data surface and f < 0 in the
interior. Furthermore, to simplify algebraic manipulations, we assume that
f(x, t) is defined such that ∇f = n̂, the outward unit normal vector. If the
original definition of f does not satisfy this condition, then f(x, t) can always
be redefined as f/|∇f | which does satisfy this condition on the surface. We
do not assume that the data surface is impenetrable because this will give
us the most general result for applications. Our aim is to use the acoustic
analogy to derive a wave equation with inhomogeneous sources in the volume
exterior to and on the data surface itself. Here the generalized function theory
simplifies the derivation enormously and provides a method completely parallel
to Lighthill’s derivation of the jet noise equation [12].

We assume that the fluid extends inside the data surface with the conditions
of the undisturbed quiescent medium, which, with the exception of the sound
speed c, we denote with the subscript o. The reason for this extension (i.e.,
embedding the original problem into unbounded space) is that we want our
wave equation to be valid in the entire three-dimensional space so that we can
use the simple Green’s function of the wave equation in unbounded space. We
have now introduced an artificial discontinuity in all fluid parameters across
the data surface f = 0. Therefore, to use the conservation laws, we assume
all flow parameters are generalized functions and we work with conservation
laws with generalized derivatives. For now we assume that the flow parameters
have no discontinuities other than those across the data surface. The general
situation will be discussed later. The mass continuity and conservation of
momentum equations within the fluid (i.e., in the region f > 0) are:

∂ρ

∂t
+

∂

∂xi

(ρui) = 0 (14)

∂

∂t
(ρui) +

∂

∂xj

(ρuiuj + Pij) = 0 (15)

where ρ is the fluid density, ρui is the component of fluid momentum and Pij

is the compressive stress tensor as defined by Lighthill [12]. The momentum
equation (15) is written in the conservative form, sometimes known as the
Reynolds form, to avoid the problem of multiplication of generalized func-
tions. 8

We know that within the fluid the conservation laws hold with both ordinary
and generalized derivatives. Let us now use the rules of generalized differentia-
tion to see how these conservation laws change when the artificial discontinuity

8 Multiplication of generalized functions is an advanced subject that will not be
encountered in our work, therefore we will not discuss it here. We interpret the
vector components ρui and tensor components ρuiuj as unique generalized functions
as opposed to the product of separate generalized functions.
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we introduced across f = 0 is included and the ordinary derivatives are re-
placed with generalized derivatives. In the case of the continuity equation we
have

∂̄ρ

∂t
+

∂̄

∂xi

(ρui) =
∂ρ

∂t
+ (ρ− ρo)

∂f

∂t
δ(f) +

∂

∂xi

(ρui) + (ρui)
∂f

∂xi

δ(f)

= [ρovn + ρ(un − vn)]δ(f) (16)

where un = uini is the local fluid velocity in the direction normal to the data
surface, ni = ∂f/∂xi is the component of the unit outward normal to f = 0
and vn = −∂f/∂t is the local normal velocity of the data surface. Here (ρ−ρo)
is the jump in ρ at f = 0 and ρui is the jump in ρui at f = 0. Note that we
have used equation (14) on the right of the first equality to find the second
equality. The above result indicates that the artificial discontinuity at f = 0
has introduced a source term on the right side of the mass continuity equation
that is proportional to the local rate of mass injection into the exterior domain.
The analytical form of the expression for the mass injection rate has been
readily obtained from the rules of generalized differentiation!

Similarly, source terms are introduced by the artificial discontinuity across the
data surface in the momentum equation. The generalized momentum equation
is then

∂̄

∂t
(ρui) +

∂̄

∂xj

(ρuiuj + Pij) =
∂

∂t
(ρui) + ρui

∂f

∂t
δ(f)

+
∂

∂xj

(ρuiuj + Pij) + (ρuiuj + ∆Pij)
∂f

∂xj

δ(f)

= [ρui(un − vn) + ∆Pijnj]δ(f) . (17)

We have used equation (15) on the right side of the first equality in equa-
tion (17) to simplify the second equality. We see on the right side of the mo-
mentum equation with generalized derivatives that the artificial discontinuity
across the data surface has introduced a source proportional to the sum of the
local force intensity ∆Pijnj on f = 0 and the rate of momentum injection,
ρui(un − vn), into the exterior of f = 0. We remind the reader that all fluid
parameters in equations (16) and (17) refer to the exterior side of the data
surface.

The next step in the derivation of the FW–H equation follows exactly Lighthill’s
derivation of the jet noise equation except that all new derivatives taken are
generalized derivatives. First take ∂̄/∂t of both sides of equation (16), then
∂̄/∂xi of both sides of equation (17) and subtract the later from the former.
Finally subtract ∇̄2[c2(ρ− ρo)] from both sides of the equation and rearrange
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to keep the wave operator acting on c2(ρ−ρo) on the left side of the equation.
The resulting equation is the Ffowcs Williams–Hawkings equation for a pen-
etrable or permeable data surface. Using p′ for c2(ρ − ρ0) on the left side 9 ,
this equation is:

¯2p′(x, t) =
∂

∂t

{
[ρovn + ρ(un − vn)]δ(f)

}

− ∂

∂xi

{
[∆Pijn̂j + ρui(un − vn)]δ(f)

}

+
∂̄2

∂xi∂xj

[TijH(f)]

(18)

where Tij = ρuiuj + Pij − c2ρ′ is the Lighthill stress tensor (ρ′ = ρ − ρo)
and on the left side we use the notation ¯2 = [(1/c2)(∂̄2/∂t2)] − ∇̄2. Note
that we have not used a bar over ∂/∂t and ∂/∂xi in the first two terms on
the right side of equation (18) because it is obvious that these can only be
generalized differentiation—due to the presence of δ(f) in the expression inside
the curly brackets. The Heaviside function H(f) in the last term on the right
of equation (18) is used here, following Ffowcs Williams and Hawkings, to
remind the reader that this volume source only exists exterior to the data
surface. By assumption Tij = 0 inside the data surface. Note that, in general,
the viscous term in ∆Pij is a negligible source sound and one can often assume
that ∆Pij = (p−po)δij, where δij is the Kronecker delta. Ffowcs Williams and
Hawkings chose to write p instead of p− po in the second source term of the
FW–H equation—they then regarded p as the gauge pressure in that source
term. This has caused some confusion among users which we will rectify here
by defining ∆Pij = (p− po)δij when the fluid is inviscid.

4.2 Interpretation and Observations

The first two source terms in equation (18) are monopole (thickness) and
dipole (loading) sources, respectively, based on their mathematical structure.
Both of these sources are surface sources: i.e., they act only on the surface
f = 0 as indicated by the presence of the Dirac delta function δ(f). The
reader is warned, however, that when the data surface is in motion, these
sources behave differently than stationary monopole and dipole sources and
care must be exercised when making physical arguments. The third source
term is a quadrupole source term that acts throughout the volume that is
exterior to the data surface—as indicated by the Heaviside function H(f).

9 Outside the source region we expect linear wave propagation, hence p′ = c2ρ′ is
valid in this region.
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The three source terms on the right of equation (18) have become known
as the thickness, loading and quadrupole source terms, respectively, although
this terminology is appropriate only if the data surface corresponds to a solid
(impermeable) surface.

If the data surface f = 0 coincides with a solid surface, then the normal
velocity of the fluid is the same as the normal velocity of the surface (un = vn).
In this case equation (18) can be written

¯2p′(x, t) =
∂

∂t

{
[ρovn]δ(f)

}
− ∂

∂xi

{
[∆Pijn̂j]δ(f)

}
+

∂̄2

∂xi∂xj

[TijH(f)] (19)

which is the most common partial differential form of the FW–H equation. The
monopole or thickness source term in equation (19) models the noise generated
by the displacement of fluid as the body passes (i.e., thickness noise). The
dipole or loading source term in equation (19) models the noise that results
from the unsteady motion of the force distribution on the body surface (i.e.,
loading noise, blade-vortex-interaction noise and even broadband noise). The
thickness and loading source terms have been used for several years in rotor
noise prediction because they account for most of the acoustic signal when
the flow field is not transonic or supersonic. Furthermore, they do not require
knowledge of the flow field off the blade (although the accurate determination
of the blade-surface pressure is still challenging).

The quadrupole source term in equation (19) models the nonlinearities due
to both the local sound speed variation and the finite fluid velocity near the
blade. The quadrupole source term is required to accurately predict both the
waveform shape and amplitude of high-speed impulsive noise. The impor-
tance of the quadrupole term has long been recognized [18, 19], however, the
quadrupole source has often been neglected in rotor noise prediction because
of the computational demands of determining the flow field with sufficient
accuracy to be used for noise prediction and the computational challenge of
volume integration in the acoustic prediction. If equation (18) is used with
a permeable data surface that encloses the acoustic sources, then the surface
source terms in equation (18) also account for the sound generated by acous-
tic sources in the flow field outside of the blade surface but inside the data
surface. In this case the volume source in equation (18) may have a negligible
contribution. This extremely valuable observation will be discussed further in
section 6.4.

It is interesting to note that the form of the various source terms is not unique.
One example of this is known as Isom thickness noise [36]. This can be demon-
strated by using the example given by Ffowcs Williams (and reported by Faras-
sat [37]). First, consider the generalized differentiation of the trivial function
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[1−H(f)] with respect to time which is

∂

∂t
[1−H(f)] = −∂f

∂t
δ(f) = vnδ(f). (20)

Recall that H(f) is the Heaviside function, hence H(f) = 1 outside the surface
f = 0 and the left side of equation (20) is zero in this region. Also recall that
vn is the local normal velocity of the surface and the function f has been
defined such that |∇f | = 1. Taking another time derivative of both sides of
equation (20) gives the following result:

∂2

∂t2
[1−H(f)] =

∂

∂t
[vnδ(f)]. (21)

In a similar fashion, the Laplacian operator can be applied to the function
[1−H(f)] yielding:

∇2[1−H(f)] = − ∂

∂xi

[n̂iδ(f)]. (22)

Using equation (21) and equation (22), the following wave equation is ob-
tained:

[ 1

c2

∂2

∂t2
−∇2

]
{ρoc

2[1−H(f)]} =
∂

∂t
[ρovnδ(f)] +

∂

∂xi

[ρoc
2n̂iδ(f)]. (23)

Because the trivial function ρoc
2[1−H(f)] is always zero outside the surface

f = 0, we see that

∂

∂t
[ρovnδ(f)] = − ∂

∂xi

[ρoc
2n̂iδ(f)], (24)

where the term on the left side of equation (24) is recognized as the thickness
source term in equation (19) and the term on the right side of equation (24) is
the loading source term of equation (19) with with a constant pressure jump
p − po = ρoc

2. Although mathematically equivalent, the two formulations
for thickness noise have quite different characteristics and robustness when
integrated numerically [38]. More examples of the nonuniqueness of the source
description are given by Ffowcs Williams [39] and Kanwal [32].

We now return to the question of how the effect of other flow discontinuities
on noise generation can be studied using the FW–H equation and whether
equation (18) should be modified for this purpose. Shocks, thin wakes and
vortices are flow discontinuities that can be potential sources of sound from the
point of view of the acoustic analogy. A careful examination of our derivation
of equation (18) shows that discontinuities in the flow field will not modify the
FW–H equation. However, care must be exercised in taking the generalized
space derivatives of Tij because any flow discontinuity, such as a shock, will
introduce surface sources on the discontinuity surface [40,41].
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Let’s look back and see what we have achieved. The FW–H equation is the
governing equation for computation of the noise outside of the surface f = 0.
It requires knowledge of ρ, ρui and p on the data surface and Tij outside
of this surface. These quantities are usually obtained from a CFD computa-
tion and, in general, their computation is a difficult task. This difficulty has
made some researchers dubious about the usefulness of the acoustic analogy
approach and has led them to search for alternative methods such as finite
difference schemes. The argument here is that if one has to use substantial
computer resources to supply the data needed as input to the FW–H equa-
tion, then perhaps propagation in the typically linear region external to the
data surface can be computed for only a little extra effort. Such an argument
has several weaknesses, which we will point out. First, the FW–H equation is
linear and many different closed form solutions can be derived and efficiently
coded for numerical work. Furthermore, such closed form solutions can be used
as the basis of qualitative arguments for noise control. Second, most numerical
schemes have dispersion and dissipation errors that depend on the spatial and
temporal grid resolution. Because of the broad frequency range of interest in
acoustics, most purely numerical schemes cannot compete in accuracy and effi-
ciency with codes based on the FW–H equation. We foresee that this situation
will not change for a long time. Finally, a much larger computational domain
is needed for an acoustic problem than for an aerodynamic problem. This
increased domain size increases computational resource requirements dramat-
ically. Therefore, the acoustic analogy approach is an ideal partner to CFD:
the near-field should be computed with unsteady CFD methods while the
FW–H equation is appropriate for the prediction of the acoustic propagation.

4.3 Integral Formulations

To realize the advantages of the FW–H equation as compared to CFD meth-
ods, an integral formulation of the FW–H equation should be used. The key
feature of the FW–H equation is that it is an inhomogeneous wave equation
for the external flow problem that has been embedded in unbounded space.
Hence, an integral representation of the solution can be readily found using
the free-space Green’s function (δ(g)/4πr, with g = τ − t + r/c). We use the
term “integral representation” because the integral formulation must either be
solved as a singular integral equation or, as is most often done in rotor noise
prediction, the flow-field data in the source region must be given as input to
determine the acoustic solution outside the source region. The particular for-
mulation that is developed results primarily from the choice of the change of
variables needed to analytically integrate the Dirac delta functions.

To illustrate the above explanation, consider the following example. An inho-
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mogeneous wave equation can be written as

2φ(x, t) = Q(x, t)δ(f) (25)

where 2 is the wave operator, Q(x, t) is the source strength and f(x, t) = 0
defines a surface over which the source is distributed. Equation (25) is typical
of the various source terms in the FW–H equation (either (18) or (19)). By
using the free-space Green’s function δ(g)/4πr, an integral representation of
the solution may be written as

4πφ(x, t) =

t∫

−∞

∞∫

−∞

Q(y, τ)δ(f)δ(g)

r
dydτ . (26)

The next stage in the development of the acoustic formulation is to integrate
the Dirac delta functions δ(f) and δ(g), a process that requires a change of
variables. The change of variables determines the type of formulation. Equa-
tion (26) can be expressed as

4πφ(x, t) =
∫

f=0

[ Q(y, τ)

r|1−Mr|
]
ret

dS (27)

=

t∫

−∞

∫

f=0
g=0

Q(y, τ)

r sin θ
cdΓdτ (28)

=
∫

F=0

1

r

[Q(y, τ)

Λ

]
ret

dΣ (29)

with the variable transformations (y3, τ) → (f, g), (y2, y3) → (f, g) and (y3, τ) →
(F, g), respectively. Equation (27) is obtained by noting that

dydτ =
dy1dy2dfdg

| ∂f/∂y3||1−Mr| =
dSdfdg

|1−Mr| ; (30)

equation (28) is obtained by noting that

dy =
dy1dfdg

∂(f, g)/∂(y2, y3)
=

dy1dfdg

(∇f ×∇g) · ê1

=
cdΓdfdg

sin θ
; (31)

and equation (29) is obtained by noting that

dydτ =
dy1dy2dFdg

∂(F, g)/∂(y3, τ)
=

dy1dy2dFdg

∂F/∂y3

=
dy1dy2dFdg

N3|∇F | =
dΣdFdg

|∇F | (32)

where the function F (y;x, t) = f(y, t − r/c), |∇F | ≡ Λ, and N3 is the third
component of the unit normal vector to the surface F = 0. The geometrical
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proof of

dS

|1−Mr| =
cdτdΓ

sin θ
=

dΣ

Λ
(33)

was given in ref. 14. More recently a completely analytical derivation was given
by Farassat and Farris [42].

The three formulations expressed in equations (27)–(29) are termed the retarded-
time, collapsing-sphere and emission-surface formulations, respectively. Time-
domain-acoustic formulations can be classified as one of these generic types;
each type has its own physical and geometrical interpretation. These formu-
lations and their interpretations will be discussed in more detail in section
5. If the source in equation (25) had been a volume distribution, analogous
integral formulas would result. (Ref. 16 discusses many of the specific linear
formulations used in rotating blade noise prediction.)

Nearly all rotor noise prediction codes have used one of two formulations
developed by Farassat. In the following subsections, some of the important
details of their development are presented.

4.3.1 Formulation 1

Although similar to the previous example, the thickness and loading source
terms in the FW–H equation (either equation (18) or (19)) have the additional
complexity of time and space differentiation of the source terms, including the
Dirac delta function δ(f). One approach to dealing with this complexity is
to recognize that the wave operator 2 is a linear operator, hence both the
temporal and spatial derivatives commute. Thus the formal solution of the
FW–H equation (19) can be written

4πp′(x, t) =
∂

∂t

t∫

−∞

∞∫

−∞

ρovnδ(f)δ(g)

r
dydτ − ∂

∂xi

t∫

−∞

∞∫

−∞

`iδ(f)δ(g)

r
dydτ (34)

where `i = ∆Pijn̂j is the local force acting on the impenetrable data surface
and the quadrupole source has been neglected. Next, the divergence operator
can be taken inside the second integral where it acts on δ(g)/r. If we recall
that g = τ − t + r/c and note that ∂r/∂xi = r̂i, then

∂

∂xi

(δ(g)

r

)
= −δ′(g)

cr
r̂i − δ(g)

r
r̂i . (35)

Notice also that
∂

∂t

(δ(g)

r

)
= −δ′(g)

r
(36)
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which can be used to eliminate the δ′(g) in equation (35). Using equations
(35) and (36) to eliminate the divergence operator in equation (34) yields:

4πp′(x, t) =
1

c

∂

∂t

t∫

−∞

∞∫

−∞

(ρocvn + `r)δ(f)δ(g)

r
dydτ +

t∫

−∞

∞∫

−∞

`rδ(f)δ(g)

r2
dydτ

and a change of variables (τ, y3) → (g, f) results in the retarded-time formu-
lation Farassat has called Formulation 1:

4πp′(x, t) =
1

c

∂

∂t

∫

f=0

[
ρocvn + `r

r|1−Mr|
]

ret
dS +

∫

f=0

[
`r

r2|1−Mr|
]

ret
dS . (37)

In equation (37) the subscript ret implies that the integrand is evaluated at
the retarded time (i.e., the time when the sound is emitted) and the inte-
gration is performed over the actual blade surface f = 0. This formulation
has the advantage that spatial differentiation—which would need to be done
numerically—is avoided.

One drawback of Formulation 1 is that the time derivative of the first integral
must still be performed. The FW–H equation is applicable only for a station-
ary observer, yet the acoustic pressure computation for each observer time is
independent of all other observer times. Therefore, the observer position can
be moved for each point in the acoustic pressure time history computation to
provide the acoustic solution for the case of a moving observer (e.g., a wind
tunnel test or the case of a microphone mounted on the helicopter). In this
situation, the integral must be evaluated at the same observer position for
each time used to numerically compute the time derivative of the integral.

4.3.2 Formulation 1A

The speed and accuracy of the noise calculation is improved by elimination of
the time derivative of the first integral in Formulation 1. Using the definition
of the retarded time function g and the fact that r is a function of τ gives

∂

∂t

∣∣∣∣
x

=
( 1

1−Mr

∂

∂τ

∣∣∣∣
x

)
ret

(38)

where the |x implies that the observer position x is fixed during the differen-
tiation. This relation enables the time derivative to be taken inside the first
integral of equation (37). When this is done the final result is

p′x, t) = p′T (x, t) + p′L(x, t) (39)

where
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4πp′T (x, t) =
∫

f=0

[
ρo(v̇n + vṅ)

r|1−Mr|2
]

ret
dS

+
∫

f=0

[
ρovn(rṀr + cMr − cM2)

r2|1−Mr|3
]

ret
dS (40)

4πp′L(x, t) =
1

c

∫

f=0

[ ˙̀
r

r|1−Mr|2
]

ret
dS +

∫

f=0

[
`r − `M

r|1−Mr|2
]

ret
dS

+
1

c

∫

f=0

[
`r(rṀr + cMr − cM2)

r2|1−Mr|3
]

ret
dS (41)

which is known as Formulation 1A. In these equations a dot over a variable
implies the source time derivative of that variable and the subscript n, r and
M refer to the dot product with the unit normal vector, the unit radiation
vector, or the surface velocity vector normalized by the speed of sound, respec-
tively. In this formulation, integrands with 1/r dependence are far-field terms
and those with 1/r2 dependence are near-field terms. Although the integrands
in Formulation 1A are somewhat more complicated than in Formulation 1, a
numerical differentiation of an integral is not required. This is especially im-
portant for cases where the observer is moving. More details on the derivation
of Formulation 1A can be found in refs. 43,44.

5 Numerical Algorithms for Rotor Noise Prediction

Most publications in rotor noise prediction focus on the analytical develop-
ment and derivation of the formulation with only passing reference to its nu-
merical implementation. While the formulation provides the framework and
geometrical interpretation; we use the term “algorithm” to refer to how the
integral is evaluated numerically. The accuracy, efficiency and robustness of
the numerical algorithm depend strongly on the choice of both the formulation
and the algorithm, nevertheless the details of the numerical implementation
itself will affect code performance significantly. For example, high-order in-
tegration and adaptive quadrature algorithms can potentially be much more
accurate and efficient than simpler counterparts for the same formulation. A
discussion of some of the most widely used numerical algorithms—classified
by formulation—is presented in this section. Although this discussion is pri-
marily directed towards algorithms for surface-source distributions, analogous
techniques are available for the integration of volume-source distributions.
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5.1 Retarded-Time Algorithms

We will first consider a generic retarded-time formulation

4πφ(x, t) =
∫

f=0

[ Q(y, τ)

r|1−Mr|
]
ret

dS (42)

where Q is the known source strength, which is a function of the source position
and time (y, τ). Normally in acoustic predictions, φ is the acoustic pressure p′.
The interpretation of equation (42) is that integration occurs over the original
surface f = 0, with the integrand evaluated at the emission, or retarded, time
τ ∗ = t − r/c. The integration is easy to understand because the integration
surface is given as part of the source description. Note that the formulation
requires that the observer location x and the observer time t are fixed during
the evaluation of the integral. Numerical implementations of this formulation
have proven to be very robust and efficient; hence, most acoustic-analogy-
based rotor noise predictions (e.g., refs. 44,45) and Kirchhoff codes (e.g., refs.
46,47) utilize retarded-time formulations.

5.1.1 Mid-Panel Quadrature

The most common method of numerically evaluating retarded-time integrals
is to approximate the integral as follows:

4πφ(x, t) ≈
N∑

i=1

[Q(yi, t− ri/c)

ri|1−Mr|i
]
ret

∆Si (43)

Here, the surface S is divided into N panels and the integrand is evaluated
at the center of each panel (yi) at that point’s retarded time. 10 If the source
is not moving, then the determination of the retarded time τ ∗ is made by
a simple computation τ ∗ = t − ri/c, where ri = |x − yi|. If the source is
in motion, then the source position is a function of the retarded time (i.e.,
the desired yi is yi(τ

∗)) and, unless the source motion is very simple, it is
not practical to determine the retarded time analytically. The retarded time,
then, is found numerically as the root of the equation t − τ − r(τ)/c = 0.
Even when the source motion is complex, such as for a helicopter main rotor,
standard root-finding algorithms work well (e.g., see ref. 48). Because the
source strength Q is evaluated at the retarded time, temporal interpolation of
the input data is usually required. A time history of φ is developed by choosing
both the observer position and the observer time, evaluating the summation
in equation (43) and then choosing the next observer time in the time history.

10 Note that the subscript i used in this section does not refer to the component of
a vector, but rather is an index to the ith panel.
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Equations (42) and (43) can be used to find the time history of φ for a moving
observer if the observer position is moved for each evaluation of the integral.

The approximation given in equation (43) with yi at panel centers is in
widespread use and works well as long as the panel size is sufficiently small.
In this case, sufficiently small means that the source strength variation is ap-
proximately linear over the panel and that the retarded time does not vary
significantly over the panel (i.e., ∆τ << typical period of fluctuations of Q).
Refinement of the panel size is clearly needed if the source strength Q is not
linear over the panel because Q is not resolved and the midpoint value is un-
likely to represent the mean value. Insufficient resolution of the source strength
can occur in practice whenever the noise source is physically localized, such as
occurs in blade-vortex interaction noise for a helicopter rotors; therefore, we
must require that the input data resolve the source spatially and temporally.

A subtle but extremely important point is that the variation of Q over a panel
in retarded-time space can be much more significant than the variation of
Q over a panel at single source time. Meadows and Atkins [49] noticed this
phenomenon in a Kirchhoff computation of noise generated by an oscillating
sphere. In their work, they used high-order interpolation and quadrature but
found that more points per wavelength than expected were needed on the
Kirchhoff surface to achieve the desired accuracy. Figure 3 (from ref. [49])
compares the pressure on the integration surface at one source time τ to the
pressure as a function of retarded time τ ∗. Although the pressure plotted in
figure 3 is not over one panel but over one meridian line on the spherical
Kirchhoff surface, the idea is the same—the behavior of function in retarded-
time space can be significantly different from that at any individual source
time. A large panel size, certain observer orientations (n̂ · r̂ → 0) and a large
panel velocity (Mr → 1) can all lead to large variations in retarded time over
a panel. [Fig. 3

about
here.]

5.1.2 High-Accuracy Quadrature

A refinement of equation (43) can be made by replacing the single evaluation
of the integrand at the panel center with more points; thus, greater accuracy
is achieved. The discrete computation would then be

4πφ(x, t) ≈
N∑

i=1

( ni∑

j=1

αj

[Q(yj, t− rj/c)

rj|1−Mr|j
]
ret
|J |j

)
∆Si (44)

where αj and |J |j are the quadrature weight coefficient and determinant of
the Jacobian of the transformation, respectively, for the jth point in the panel
quadrature algorithm. The weights αj and the location of the quadrature
points yj can be chosen to increase the order of polynomial approximation used
for the panel quadrature. Thus, with a larger number of points the limitations
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of the mid-panel algorithm can be overcome. Farassat et al. [50] and Dunn
and Tarkenton [51] use a high-order quadrature algorithm of this type in their
propeller noise prediction code ASSPIN.

The full benefit of a high-accuracy quadrature is only realized when a solution-
adaptive quadrature scheme is used. This feature is included in equation (44)
by selecting the number of quadrature points n used in the ith panel with
some parameter related to the solution; that is, a larger number of quadrature
points are used only when the function variation over the panel requires it. An
adaptive-quadrature scheme can provide high accuracy and minimize the com-
putational effort. Brentner and Holland [52] developed an adaptive-quadrature
algorithm in a far-field quadrupole noise prediction. Their adaptation param-
eter was

ni(Mr, ∆Si) ∝ ∆Si

|1−Mr| (45)

where Mr (the Mach number of the panel center in the radiation direction)
and ∆Si (the physical area of the panel) were used to determine the number
of Gauss-Legendre quadrature points in the chordwise direction of the panel;
ni is scaled such that 1 ≤ ni ≤ 20. As Mr approaches unity or if the area of
the panel is large, the adaptation parameter becomes large. Similarly, if Mr is
small or the area of the panel is small, then the adaptation parameter becomes
small. The computation with adaptive quadrature required little additional
computer time but yielded a significantly better signal, as shown in figure 4.
(Note: The two remaining bumps at time t = 0.4 and t = 1.5 are an artifact [Fig. 4

about
here.]of the chordwise truncation of the quadrupole source integration region ahead

and behind the blade.) Although the adaptive quadrature of Brentner and
Holland [52] worked well in their application, the ideal solution is an adaptive
quadrature scheme that is based on a measure of error in the solution.

5.1.3 Source-Time-Dominant Algorithm

A completely different approach can be taken to evaluate a retarded-time
integral if the source time is regarded as the primary time (i.e., dominant).
Rather than select the observer time in advance, one can choose the source
time for a panel (by again using the panel center) and determine when the
signal will reach the observer. If the observer x is stationary, then t = τ +ri/c,
which can be computed immediately. Otherwise, we must find the root of the
equation t − τ − |x(t) − yi(τ)|/c = 0. The determination of t even for the
latter case is easier than finding the retarded time because observer motion
is usually quite simple; hence, the solution for t may be found analytically
rather than by iteration. A sequence of source times (i.e., the times at which
the source strength is available) will lead to a sequence of unequally spaced
observer times. This panel time history can be interpolated to provide the
contribution at the desired observer times. Interpolation in time is necessary
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so that the contributions from all source panels can be added together at the
same observer times. This algorithm can be written symbolically as

4πφ(x, t∗) ≈
N∑

i=1

I
(
Ki(t), t

∗) (46)

where I(·, t∗) is an interpolation operator and t∗ is the desired observer time.
The approximation of the integral over the panel K is defined as

Ki(t) =
Q(yi, τ)

ri|1−Mr|i ∆Si (47)

The value of t∗ is determined by the selection of yi and τ . This algorithm
has the advantage that a retarded-time calculation is not necessary per se
and the discrete time-dependent input data do not need to interpolated. This
characteristic is useful when a CFD code provides the input data. Another
computational advantage of the source-time-dominant algorithm is that the
solution process is inherently parallel; thus, the algorithm is a good candi-
date for parallel computers. Xue has implemented this algorithm in a general
Kirchhoff aeroacoustics code [53] and Leishman [54] presented a version of
this approach (which he called a “binning technique” 11 ) for rotor noise pre-
diction. Recently, Brentner et al. [55] have analyzed the computational effi-
ciency of the retarded-time and source-time-dominant algorithms. Both their
analysis and numerical implementations found that source-time-dominant al-
gorithm requires significantly less operations for a maneuvering rotor noise
prediction 12 . For a more typical rotor noise computation (up to 3 coordinate
transformations and one blade passage period), both methods are comparable
though the retarded-time algorithm may be slightly more efficient.

5.1.4 Supersonic-Source Motion

Although algorithms based upon the retarded-time formulation are robust,
they have one drawback—for supersonic-source motion the integrals become
singular (i.e., when Mr = 1 the Doppler factor |1−Mr| = 0) and the retarded-
time equation can have multiple roots. The multiple roots for supersonic-
source motion can be found without too much trouble, but the real problem
is the Doppler singularity in the integrand. The necessary regularization of
the integral requires both mathematical analysis and conditional code logic.
As an alternative, either the collapsing-sphere formulation or the emission-
surface formulation may be used to avoid the singularity. In refs. 50 and 51

11 “Binning” implies a zeroth-order interpolation operator, i.e., the contribution is
put in the nearest time “bin”.
12 Maneuver noise predictions are expected to require a large number of points in
the time history (> 1000) and a large number of coordinate transformations (as
many as 15) to represent the aircraft and blade motion.
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the formulation is switched for supersonic panels to utilize the efficiency and
robustness of the retarded-time formulation for subsonic panels while enabling
the code to handle supersonic-source motion. (Note that the Mach number Mr

used in the Doppler factor 1−Mr is the component of the source velocity in
the radiation direction divided by sound speed of the undisturbed medium.
This should not be confused with the local Mach number of a fluid particle.)

5.2 Collapsing-Sphere Algorithms

Now we turn our attention to the collapsing-sphere formulation

4πφ(x, t) =

t∫

−∞

∫

f=0
g=0

Q(y, τ)

r sin θ
cdΓdτ (48)

where θ is the angle between the radiation vector r̂ and the surface normal
vector n̂. In equation (48), the inner integration is a line integral over the
intersection of the source surface f = 0 and the surface defined by g = τ − t+
r/c = 0. The equation g = 0 (which is precisely the retarded-time relationship)
can be interpreted as the equation of a sphere with radius r = c(t−τ) centered
at the observer position x for a particular source time τ . Recall that the
observer position and time (x, t) are fixed during the integration in equation
(48); hence, as τ approaches t (in the outer integral) the radius of the sphere
reduces, or collapses. For any source time τ , the collapsing sphere contains
all points in space that can potentially emit a signal that will be received by
the observer x at time t; the intersection of the collapsing sphere g = 0 and
the data surface f = 0 (called a Γ curve) is the collection of source points
that do emit a signal at source time τ that reaches the observer at time t.
A schematic is shown in figure 5. The collapsing-sphere formulation does not
have a Doppler singularity; however, this formulation does have a singularity
in the integrand that occurs when the surface normal vector n̂ is parallel to
the radiation vector r̂ (i.e., sin θ = 0). [Fig. 5

about
here.]

Farassat and Brown [56] were the first to develop a collapsing-sphere algo-
rithm to predict the noise from thickness and loading source terms of the
FW–H equation. They computed thickness and loading noise for a moving,
noncompact source with realistic source geometry for both subsonic- and
supersonic-source motion. In their code, Farassat and Brown evaluated the
double integrals numerically with the following algorithm:

(1) Determine the initial observer time ti for which the collapsing sphere
intersects the source surface.

(2) Choose the value of τj.
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(3) Determine the intersection of the collapsing sphere g = 0 and the source
surface f = 0. The Γ curve is approximated by straight line segments.

(4) Compute the integrands at the ends of the line segments and evaluate
the line integral over the Γ curve by the trapezoidal rule.

(5) Advance the source time τj and repeat 3 and 4 until the collapsing sphere
no longer intersects the source surface. Simpson’s rule is used for the τ
integration.

(6) Repeat this process for each observer time in the time history.

This algorithm is computationally demanding because a construction of the Γ
curve must be done many times for each observer time. Experience has shown
that the collapsing-sphere algorithm outlined above requires 1 to 2 orders of
magnitude more computer time than the mid-panel quadrature retarded-time
algorithm. The retarded-time algorithm is much faster because the retarded
time τ ∗ must be found only once per source panel for each observer time.
Another problem experienced by Farassat and Brown was that the computed
solution was oscillatory and required numerical smoothing. The sin θ term in
the denominator of equation (48) must be at least partially responsible for the
numerical oscillations.

5.3 Emission-Surface Algorithms

Finally, we consider the general form of an emission-surface formulation:

4πφ(x, t) =
∫

F=0

1

r

[Q(y, τ)

Λ

]
ret

dΣ (49)

where

Λ =
√

1− 2Mn cos θ + M2
n (50)

and the Σ surface F = 0 is the emission or influence surface. The Σ surface is
the collection of points in space-time that emit signals that reach the observer
at one particular observer time. The emission surface is sometimes referred
to as the acoustic planform, but we reserve this terminology for when we
mean the projection of the Σ surface onto a thin surface (i.e., the helicoidal
surface swept out by a propeller (e.g., see ref. 57) or the rotor disk for a
helicopter rotor). The emission-surface formulation does not suffer from the
Doppler singularity, but a true singularity can occur when the surface normal
vector n̂ of a source point is parallel to the radiation vector r̂ and the source
point is moving toward the observer at exactly sonic speed (i.e., Λ = 0).
This singularity is an indication of a caustic in the solution; Farassat and
Myers [58] have shown for the FW–H equation that the singularity from the
surface source is eliminated if the quadrupole-source term is included.
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The main difficulty in the numerical evaluation of equation (49) is the con-
struction of the Σ surface. The Σ surface can be constructed by using either a
retarded-time computation to determine the location of the source points at
the retarded time (i.e., F = 0 is [f = 0]ret) or through the process of comput-
ing the intersection of the collapsing sphere with the source surface. In either
case, special care must be taken in the construction because the Σ surface may
be composed of several disjoint pieces when the source motion is supersonic—
just the situation which benefits most from the use of the emission-surface
formulation.

Brentner [59] has developed an alternate method for constructing the Σ surface
and performing the integration in equation (49)which is based on a computer
graphics algorithm. The approach is similar to the source-time-dominant algo-
rithm presented earlier in the retarded-time algorithms section: the source time
is chosen and the corresponding observer time is computed at each grid point.
If the observer times are computed and stored for each desired source time,
the discrete computational data become a three-dimensional array—indices i
and j parameterize the surface spatially and the index k represents the source
time. In this three-dimensional computational space, isosurfaces of observer
time t are, by definition, distinct realizations of the Σ surface. Therefore, the
problem of constructing the Σ surface is equivalent to the construction of
isosurfaces—an important problem in computer graphics.

Surface reconstruction must be done very efficiently and quickly to be useful
for interactive data visualization. Lorensen and Cline [60] have developed the
method of marching cubes, which uses a two-step approach to the surface-
construction problem. The first step is to locate the surface that corresponds
to the level desired and approximate it with triangles. The second step is to
calculate a surface normal vector at each triangle vertex. The marching-cubes
method uses a divide-and-conquer approach to locate the surface in a logical
cube created from eight data points (four each from two adjacent layers, as
shown schematically in fig. 6). [Fig. 6

about
here.]

The extension of the marching-cubes algorithm for surface integration [59]
determines how the surface intersects the cube, computes the contribution to
the integral from that portion of the surface and then moves (or marches) to
the next cube. The topology of the surface can be determined uniquely by
examining the function value (observer time in this case) at each of the cube
vertices and comparing this value to the desired surface value. A table lookup
is then used to determine the exact topology of the surface in the current cube.
The surface is formed by a set of triangular panels that have vertices on the
edges of the cubes. Brentner [59] took the value of the surface integral over
each triangle as the average integrand value of the triangle vertices multiplied
by the triangle area. Linear interpolation is used to determine the integrand
values at the triangle vertices based on the previously computed value at the
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cube vertices. (For more detail on the marching cubes algorithm, see refs. 59
and 60.)

Because computations in the marching-cubes integration algorithm are done
locally, one cube at a time, the computational problem can be easily par-
titioned. This separation minimizes the necessary computer storage require-
ments. Computation locality also enables the marching-cubes integration algo-
rithm to perform well on parallel computer architectures. The marching-cubes
algorithm has no particular problem in finding surfaces that are disjoint, hence
it is well suited for use with supersonically moving sources. However, the nu-
merical integration is accurate only to low order. Improvements in accuracy
may be possible by using higher order interpolation and panel geometries other
than flat triangles, but some simplicity and locality would be compromised in
the process.

6 Recent Advances

Now that we have considered both the theory and numerical algorithms, the
ground work has been laid to consider some of the recent advances in rotor
noise prediction. This presentation focuses primarily on formulation develop-
ment and implementation at NASA Langley Research Center from about 1990
to the present. In particular, much of the research over the past decade has
focused on the prediction of impulsive noise and broadband noise. Also during
the last decade the Kirchhoff formulation for moving surfaces rapidly gained
popularity, but later it was demonstrated that the FW–H equation is far su-
perior to the Kirchhoff formula and can offer the same benefits when used
with a permeable surface surrounding all the sources. These topics are each
discussed in turn.

6.1 High-Speed Impulsive Noise

High-speed impulsive (HSI) noise is a particularly intense and annoying noise
generated by helicopter rotors in high-speed forward flight. HSI noise is closely
associated with the appearance of shocks and transonic flow around the ad-
vancing rotor blades and is accounted for by the FW–H quadrupole source.
Farassat and Brentner [41] have shown that after some manipulation of the
formal solution the noise contribution from the quadrupole may be expressed
as
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4πp′Q(x, t) =
1

c

∂2

∂t2

t∫

−∞

∫

f>0

Trr

r
dΩdτ

+
∂

∂t

t∫

−∞

∫

f>0

3Trr − Tii

r2
dΩdτ (51)

+ c

t∫

−∞

∫

f>0

3Trr − Tii

r3
dΩdτ

where p′Q(x, t) is the acoustic pressure due to the quadrupole source. The
quantity Trr is the double contraction of the Lighthill stress tensor Tij with
r̂i and r̂j; where r̂i are the components of the unit vector in the radiation
direction. In addition, dΩ is an element of the collapsing-sphere surface g = 0;
hence, equation (51) is a collapsing-sphere formulation.

The quadrupole is a volume source, hence integration over the entire collaps-
ing sphere is indicated. In practice, however, this is not actually necessary
because the Lighthill stress tensor Tij vanishes outside of the source region.
For an in-plane observer in the far field, the collapsing sphere can be locally
approximated by a right circular cylinder, as shown in figure 7. Because the
observer is assumed to be in the rotor plane (precisely where HSI noise has
maximum directivity), integration in the direction normal to the rotor plane
can be done independently of the observer position. Yu et al. [19] were the
first to use this far-field approximation for the evaluation of quadrupole noise;
however, several additional approximations were made to both the quadrupole
source strength and the acoustic integrals in ref. [19] . These additional ap-
proximations are no longer necessary. [Fig. 7

about
here.]

In the work of Brentner and Holland [52], the integration over the approximate
collapsing-sphere surface is carried out in two parts. First, integration in the
direction normal to the rotor disk is performed. They define the quadrupole
source strength on the rotor plane as

Qij =
∫

f>0

Tijdz (52)

where z is understood to be in the direction normal to the rotor disk and the
z integration is only performed outside of the rotor blade; Qij is nonzero only
in the region near the rotor blade planform and extends ahead of the leading
edge, behind the trailing edge and off the blade tip. By using relation (52),
equation (51) may be rewritten as
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4πp′Q(x, t) =
1

c

∂2

∂t2

t∫

−∞

∫

f+=0
g=0

Qrr

r
dΓdτ

+
∂

∂t

t∫

−∞

∫

f+=0
g=0

3Qrr −Qii

r2
dΓdτ (53)

+ c

t∫

−∞

∫

f+=0
g=0

3Qrr −Qii

r3
dΓdτ

where f+ = 0 represents the rotor-disk plane. The intersection of the collapsing
sphere with the rotor plane results in a Γ curve.

6.1.1 Subsonic formulation

In the development of a subsonic quadrupole formulation, equation (53) is
transformed from a collapsing-sphere formulation to a retarded-time formu-
lation (using the relations described earlier). When the time derivatives are
taken inside the retarded-time integrals [45], the quadrupole formulation may
be written

4πp′Q(x, t) =
∫

f+=0

[
Kr1

c2r
+

Kr2

cr2
+

Kr3

r3

]

ret
dS (54)

where

Kr1 =
Q̈rr

(1−Mr)3
+

M̈rQrr + 3ṀrQ̇rr

(1−Mr)4
+

3Ṁ2
r Qrr

(1−Mr)5

Kr2 =
−Q̇ii

(1−Mr)2
− 4Q̇Mr + 2QṀr + ṀrQii

(1−Mr)3

+
3[(1−M2)Q̇rr − 2ṀrQMr −MiṀiQrr]

(1−Mr)4

+
6Ṁr(1−M2)Qrr

(1−Mr)5

and

Kr3 =
2QMM − (1−M2)Qii

(1−Mr)3
− 6(1−M2)QMr

(1−Mr)4
+

3(1−M2)2Qrr

(1−Mr)5

Equation (54), together with the definitions of Kr1, Kr2 and Kr3, are referred
to as formulation Q1A. Formulation Q1A does not require numerical time
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differentiation of the integrals and, as a retarded-time formulation, is well
suited for subsonic source motion. Aside from the problem geometry, only the
time-dependent value of Qij is required as input. Brentner has implemented
formulation Q1A in a new version of the WOPWOP noise prediction code [44]
now called WOPWOP+. (Full details of the derivation are given in ref. 45.)

6.1.2 Supersonic Formulation

To develop a supersonic quadrupole formulation, equation (53) can be trans-
formed from a collapsing-sphere formulation to an emission-surface formu-
lation. The emission-surface formulation is appropriate for supersonic-source
motion because it does not have a Doppler singularity |1−Mr| in the denom-
inator of the integrand. Farassat and Brentner [61] took the time derivatives
inside the integrals by recognizing that the entire rotor plane can be consid-
ered as the emission-surface, rendering the limits of integration independent
of time. Next they changed coordinates from a frame fixed to the undisturbed
medium to a frame always aligned with the rotor blade, (i.e., (x, t) → (η, τ)).
The effect of this operation on the tensor Q with components Qij is

∂[Qij]ret

∂t

∣∣∣∣
x
=

[
∂

∂τ

∣∣∣∣
x
Qij

]

ret

=
[
∂Qij

∂τ

∣∣∣∣
�
−V · ∇�Qij

]

ret
(55)

≡
[
LτQij

]
ret

where η is the position vector in the rotating frame and τ is the source time.
Here V = ∂η/∂τ is the velocity of the point η specified in the frame fixed to
the undisturbed medium. We note that V has no component normal to the
rotor plane. It is important to recognize that when we refer to Qij|� we really
mean that the components of the tensor Qij are represented in a coordinate
system is instantaneously aligned with the rotating frame. Thus equation (55)
provides the time derivative of Qij|x in the stationary frame in terms of Qij|�
which is specified in the coordinates of the moving frame. Using the operator
notation Lτ defined in equation (55), the final emission-surface formulation
may be written

4πp′Q(x, t) =
1

c2

∫ 1

r
r̂ir̂j

[
L2

τQij

]
ret

dΣ

+
1

c

∫ 1

r2

[
3r̂ir̂jLτQij − LτQii

]
ret

dΣ

+
∫ 1

r3

[
3Qrr −Qii

]
ret

dΣ . (56)
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Notice that the operator Lτ only operates on Qij because r̂i and r̂j do not de-
pend upon t or τ . We refer to equation (56) as formulation Q2. Examining the
definition (55) and equation (56), we realize that formulation Q2 is a singu-
larity free expression for supersonic quadrupole noise. Note that equation (56)
has second space and time derivatives of Qij as well as first space derivatives in
the rotor plane. These quantities are available in the CFD postprocessor that
is used to compute Qij for acoustic calculations. As it stands, formulation Q2
is valid for subsonic and supersonic quadrupole noise prediction for helicopter
rotors in hover or forward flight. (Full details are given in ref. 61.)

Formulation Q2 has been implemented in a demonstration code 13 known as
WOPWOP2+. WOPWOP2+ differs significantly from WOPWOP+ [44, 45,
52] in that it uses an emission-surface formulation to compute thickness and
loading noise, as well as the quadrupole noise. The construction of the emis-
sion surface and subsequent integration over the emission surface is performed
using the method of marching cubes integration developed by Brentner [59]. In
ref. 61, it is shown that the subsonic (WOPWOP+) and the supersonic (WOP-
WOP2+) quadrupole formulations give identical results when the quadrupole
grid extent is the same.

Ianniello [62, 63] has also developed quadrupole noise prediction codes that
integrate the FW–H equation on a supersonic rotating domain. The main new
feature in Ianniello’s work is that he has developed a sophisticated emission-
surface construction and integration scheme [64]. In this scheme Ianniello char-
acterizes each radial section on the grounds of the distribution of sources with
multiple emission time(s) of the leading and trailing edges, into four separate
regions and then treats each region appropriately (including a self-adaptive
refinement scheme). Ianniello uses his algorithm to compute the far-field ap-
proach of Brentner [45] and has also performed the full volume quadrupole
integration. The integration results from Ianniello’s latest computations [63]
are very good (as shown later in figure 9) and the computational time seems
quite reasonable.

6.1.3 HSI Noise Predictions

We now present HSI noise calculations for a two-blade model-scale UH-1H
rotor tested in hover with tip Mach numbers 0.88, 0.9, 0.925 and 0.95 (See
ref. 65 for test information). The quadrupole grid in these computations ex-
tends 1.86R beyond the blade tip for all the WOPWOP2+ calculations shown
in figure 8. For comparison, we have also shown the signature predicted by
WOPWOP+ which includes quadrupole sources only up to the sonic circle 14 .

13 WOPWOP2+ had only hover capability.
14 The sonic circle is the radius at which the quadrupole source grid has a velocity
ΩR equal to the quiescent sound speed c.

35



The agreement between the WOPWOP2+ signature and the measured data
is excellent and better than that of WOPWOP+ for each case. For the more
intense cases (MH > 0.90), the agreement of the WOPWOP2+ prediction
with the measured acoustic pressure signature is not fully satisfactory be-
cause the WOPWOP2+ prediction overpredicts the negative peak pressure.
This is apparent in figure 8 for the times between the WOPWOP+ and the
WOPWOP2+ shock locations. This overprediction is related to the numerical
second derivative computation of quadrupole source tensor Qij. More careful
treatment of the numerical integration required to form Qij and potentially
integrating on the actual collapsing sphere together with improved numerical
differentiation of Qij should eliminate this error. Ianniello’s algorithm con-
structing the emission surface gives a better result for the MH = 0.95 case
(see figure 9). [Fig. 8

about
here.]

[Fig. 9
about
here.]

To demonstrate the forward-flight capability of the WOPWOP+ code, Brent-
ner [45] made a comparison between predicted and measured results for a
four-blade swept-tip rotor tested in the German-Dutch wind tunnel (DNW).
For this comparison, a microphone located in the rotor plane at an azimuth of
ψ = 150◦ was used. The experiment is described in the report by Visintainer
et al. [66]

The full potential solver FPRBVI [67] was used to compute the unsteady flow
field around the rotor. The CFD solution was stored at every degree of rotor
azimuth for the quadrupole source strength computation. The results of the
forward-flight noise prediction are shown in figure 10. The predicted acoustic
pressure is compared with the experimental data; the quadrupole contribution
is also shown to indicate its relative magnitude. Although the CFD calculation
used a rather coarse grid, the agreement is good. [Fig. 10

about
here.]

6.2 Blade-Vortex-Interaction (BVI) Noise

BVI noise is generated when a rotor blade intersects a previously shed tip
vortex, as shown in figure 11. BVI noise can occur continually in some flight
regimes, e.g., in descending flight. In this situation, the noise is very loud
and annoying to the nearby community. When BVI occurs, it is the most
annoying (hence most significant) source of rotor noise. Essentially, BVI noise
can be classified as an impulsive loading noise because the loading (dipole)
source term in the FW–H equation accounts for the noise. Much research has
been done on this noise mechanism since the early seventies. Schmitz [68] and
Lowson [69, 70] both have good discussions on BVI noise in their respective
articles on helicopter rotor noise. More recently, Yu also presented a review of
rotor blade-vortex interaction noise [71]. In light of these articles, this section
will be limited to a presentation of the current state of BVI noise prediction
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and a brief discussion of a few of the key contributions to BVI noise modeling
and prediction. [Fig. 11

about
here.]

Most of the effort in the last several years to predict BVI noise has gone into
modeling the transient blade surface pressure fluctuations in the interaction
process. This effort is justified by the fact that when measured blade surface
pressure fluctuations are used in acoustic codes (e.g., WOPWOP), the mea-
sured and predicted noise agree very well (See figure 12). At present, the task
of calculating the blade surface pressure is quite a difficult problem but within
the reach of current technology. The primary difficulty in the computation of
the blade surface pressure is the determination of the precise position and
strength of the vortical wake shed by the rotating blades. Another challenge
in the calculation of helicopter rotor airloads is the complex aerodynamic and
structural dynamics coupling. All of these elements must be solved accurately
in order to obtain an accurate acoustic prediction. [Fig. 12

about
here.]

To illustrate the current state-of-the-art, we now give some comparisons of
predicted and measured acoustic pressure signatures for BVI noise. These cal-
culations were performed at the NASA Langley Research Center [72,73] with
codes from the rotorcraft noise prediction system known as TRAC (TiltRotor
Aeroacoustic Codes). Figure 13 shows a flowchart of the computer codes that
form the elements of the TRAC.

TRAC is a system of prediction codes that can be used to predict the noise
for both helicopter and tiltrotor vehicles. In the results presented below, the
combination of CAMRAD.Mod1, HIRES and WOPWOP are used for BVI
noise prediction. The CAMRAD code was originally written by Wayne John-
son [74] primarily for rotorcraft performance calculation. CAMRAD.Mod1 is
a highly modified version of CAMRAD with enhanced capability [72]. This
code gives a rotor wake description at the fairly low azimuthal resolution of
10 degrees. The HIRES code postprocesses the low resolution output of CAM-
RAD.Mod1 to generate a high resolution description of the rotor wake, blade
motion and sectional loads, using classical aerodynamics. The high resolution
wake description is typically determined at 0.5 to 1 deg. resolution in rotor
azimuth angle and between 75 and 100 radial stations. Much ingenuity and
experience has gone into the development of these two codes. [Fig. 13

about
here.]

The first prediction to be shown from TRAC is for a 40 percent dynamically
and Mach scaled model of a BO-105 main rotor. The four-bladed rotor is 4 m
in diameter, hingeless and has a preconing of 2.5 deg. at the hub. The blades
have a rectangular planform with a 0.121 m chord and −8 deg. linear twist.
The aerodynamic and acoustic measurements were performed in the open
test section of the German-Dutch wind tunnel (DNW) [75]. Figure 14 shows
the predicted and measured BVI sound pressure signature at one microphone
location below the advancing side of this model rotor. In CAMRAD.Mod1, the [Fig. 14

about
here.]
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tip vortex was modeled as a combination of main- and secondary-tip vortices.
This model, which was based upon experimental observations, improved the
prediction of the blade-vortex interaction process leading to the relatively
good agreement between both measurement and predicted acoustic pressure
signatures in figure 14. In particular, the location and amplitude of the sharp
BVI pulses are predicted well.

Figure 15 shows another example of BVI noise prediction for a tiltrotor model
operating in helicopter mode [72,73]. The 1.74 m diameter rotor has 3 blades,
solidity σ = 0.114 and is a 15 percent model of the JVX tiltrotor. The blade
tip chord is 0.091 m and the blade twist is −47.5 deg. This model was tested
in the Langley 14x22 foot subsonic wind tunnel [76]. We have shown two
acoustic predictions with two different tip vortex models. The model with no
roll-up has a single strong tip vortex. The corresponding BVI noise signature,
figure 15(c), considerably overpredicts the measured signature shown in figure
15(a). The tip-vortex model with roll-up has two vortices at and near the tip.
The corresponding BVI noise signature, figure 15(b), agrees better with the
measured signature. [Fig. 15

about
here.]

The above results—which are representative in both the level of detail and
accuracy of predictions achieved by several research groups—clearly indicate
that BVI noise prediction is sensitive to accurate prediction of the rotor load-
ing. The prediction of the transient blade surface pressure due to BVI must
agree with experimental tip-vortex structure and roll-up behavior. At present,
satisfactory prediction of BVI noise is possible using classical aerodynamics to
obtain the blade surface pressure. Future developments in unsteady aerody-
namics based on the numerical solution of the Navier-Stokes equations should
provide further improvements in BVI noise prediction.

Singh and Baeder [77,78] used the WOPWOP+ code together with a Navier-
Stokes code to study the importance of transonic effects on the acoustics of
BVI noise. For BVI prediction, the in-plane approximation is too restrictive
because BVI radiation normally occurs below the rotor plane and the collaps-
ing sphere is at some angle to the rotor plane. Singh modified the quadrupole
preprocessor by dividing the aerodynamic flow field above and below the rotor
plane into several layers to minimize the error associated with integration in
the direction normal to the rotor plane. Singh and Baeder found that transonic
effects cause the BVI noise radiation to be stronger in the rotor plane, but
very little difference was noted in the region of maximum BVI noise intensity
(approximately 45 degrees below the rotor plane).

Some joint efforts of the past few years dealing with BVI noise are of particular
interest. Not completely understanding the discrepancies noted in comparison
between various BVI noise predictions, Caradonna et al. [79] formed a BVI
working group to try to understand the problem through a simpler type of
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BVI. These researchers tested their BVI noise prediction tools on the problem
of an independently generated vortex (generated by a wing upstream of the
rotor) interacting with a rotor in forward flight. 15 An experiment was run by
Kitaplioglu and Caradonna [80] that simultaneously measured both pressure
on the rotor blades and the acoustic pressure at several microphone locations.
This was followed by a blind prediction of both the BVI airloads and noise
by all the groups involved. Most of the predictions gave generally good re-
sults even though the computational tools used were somewhat different. The
outcome of this effort supports the conclusion that the acoustic prediction
methodology is fairly mature while much remains to be done to improve the
determination of the wake and tip-vortex geometry and strength.

In 1994, a joint French/German/US rotor noise test was performed in the
German-Dutch wind tunnel (DNW) [81–83]. This higher-harmonic control
aeroacoustic rotor test (HART) included measurement of the both rotor aero-
dynamics and acoustics, along with some wake measurements, for BVI noise
conditions for a rotor operating with and without higher-harmonic control.
The HART dataset is an extremely valuable asset for the refinement of BVI
noise modeling because high quality aerodynamic, acoustic and wake measure-
ments are all available in a single test. In particular, it was determined that
the primary mechanism by which HHC (Higher Harmonic Control) increases
or decreases the BVI noise is the modification to the rotor wake and blade
tip vortices. Recently, a follow-on test (HART II [84]) was completed. In the
HART II test the rotor wake was measured in much more detail, therefore, this
dataset promises to shed light on some of the rotor wake/tip vortex modeling
problems that continue to persist. Although HHC was studied in the HART
tests, several other noise reduction concepts, both active and passive, have
been studied over the past decade. Ref. 71 provides a discussion of BVI noise
reduction concepts and their analysis.

6.3 Broadband Noise Prediction

Helicopter rotors generate broadband noise that occurs in the frequency range
where the human ear is most sensitive (1 to 5 kHz). For this reason much effort
has gone into understanding the mechanisms of broadband noise generation
and its prediction. Currently, the mechanisms of broadband noise generation
are well understood. Great strides have been made in the prediction of broad-
band noise of helicopter rotors. Howe, Amiet and coworkers, and Brooks and
coworkers have made significant contributions to the understanding and pre-
diction of broadband noise. Howe and Brooks are currently active in the field;

15 An externally generated vortex simplifies the problem somewhat, since the vortex
trajectory and strength are known a priori.
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Howe’s work has emphasized trailing edge (TE) noise prediction while Brooks
and coworkers have concentrated on all aspects of rotor broadband noise pre-
diction.

For a brief history of rotor broadband noise prediction, see Brentner and Faras-
sat [1]. Here we concentrate on more recent progress. A recent publication by
Brooks and Burley [85] gives a comprehensive account of rotor broadband
noise prediction with comparison to model data. Essentially all broadband
noise is generated by random loading on the rotor blade. Thus, the source
term is the loading term in the FW–H equation. In the helicopter rotor noise
spectrum, the mid- to high-frequency range is generally of broadband nature.
The mid-frequency broadband noise is produced by blade-wake interaction
(BWI). BWI noise is produced when the rotor blade encounters the wake
turbulence, usually of preceding blades. This situation appears in level flight
and mild climb conditions. The high-frequency broadband noise is mostly self-
noise, i.e., the noise produced by boundary layer turbulence and the shedding
of turbulent eddies at the trailing edge.

At present, the BWI noise prediction proposed by Brooks and Burley [86] is
semi-empirical and based on the measured blade response to wake turbulence.
To formulate their prediction method, an extensive aeroacoustic database was
used. Blade response coherence functions were found and used in a noise ra-
diation formula developed by Amiet [87]. This approach was selected because
of the inhomogeneous nature of turbulence in the rotor wake and the depen-
dence of its statistics on operating conditions. Burley and Brooks claim that
they obtain very good agreement in directivity and spectra with measured
noise for a large range of flight conditions. This approach could be improved
further because Amiet’s acoustic result is only valid for an airfoil in uniform
rectilinear motion. In fact in Amiet’s work it is possible to get a closed form
solution for the noise spectrum in terms of the turbulent statistics—because
of this assumption. For a rotating blade Amiet’s result is valid only approx-
imately even when strip theory is used. Also in Amiet’s work, aerodynamics
and acoustics are inherently coupled.

For situations where detailed surface pressure information are available, either
from computation or experiment, another approach is required for which the
aerodynamics and acoustics are uncoupled. An obvious choice is the acoustic
analogy. Because one looks for a relation between the noise spectrum and
the statistics of surface pressure fluctuations, the choice of the form of the
solution of the FW–H equation is important. Casper and Farassat [88] have
derived a new solution of the FW–H equation called formulation 1B which is
particularly suitable for broadband noise prediction. Casper and Farassat have
shown that broadband noise can be predicted in the time domain using this
formulation. They have calculated the broadband noise spectrum of an airfoil
interacting with homogeneous turbulence in an experiment reported by Amiet
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[87]. Complete agreement with results from Amiet’s frequency domain method
was obtained over a wide range of tunnel speeds. It should be mentioned that
there was also generally good agreement between measured and predicted
noise spectra. Formulation 1B also appears to be highly suitable for trailing
edge noise prediction.

The self noise of helicopter rotor blades is generated by several mechanisms as
discussed by Brooks and Burley [85]. These include trailing edge (TE) noise
from turbulent boundary layer or separated flow interaction with the edge,
laminar boundary layer vortex shedding and blade tip noise. (See figure 16.)
Trailing edge noise generation has been studied for over forty years and the
literature on this subject is extensive. Two important recent publications on
this subject at low Mach numbers are by Howe [89, 90]. The physics of the
TE noise generation can be described as follows: as the turbulent eddies pass
over the trailing edge, the surface pressure fluctuations produced by the eddies
radiate noise at a much higher efficiency than that of the quadrupole sources
of the turbulent eddies alone. Therefore, the surface dipole noise can be or-
ders of magnitude larger than the quadrupole sources that caused the surface
pressure fluctuations. 16 From the point of view of the acoustic analogy, one
requires this pressure fluctuation as a function of space and time variables
to perform acoustic predictions. However, both obtaining experimental data
or computing these pressure fluctuations using CFD are very difficult. Ob-
taining experimental data is difficult because small pressure transducers with
high-frequency response are needed near the TE where the airfoil thickness
is generally very small. Turbulence simulations in recent years have advanced
considerably and predictions of unsteady pressure fluctuations are gradually
becoming available. However, there is the question of what acoustic formula-
tion to use when the surface pressure data are available. We will address this
question below. [Fig. 16

about
here.]

In the absence of measured or calculated surface pressure fluctuation data near
the TE of the blade, much effort has gone into the understanding of the physics
of its generation from first principles [89, 90]. It seems natural to use an in-
compressible turbulent flow simulation for TE noise. Howe [89] has shown that
the use of the Green’s function in the unbounded domain for high frequency
TE noise prediction can lead to incorrect results. The cause of the error is
that in incompressible flows, any signal travels at infinite speeds while acous-
tic waves travel at finite speed. Thus, the pressure disturbance from the TE
is felt immediately on the upstream section of the blades. Also, the primary
characteristic of the acoustic wave propagation is missed in incompressible
fluid computation. Howe proposes to use a Green’s function whose normal

16 If the unsteady surface fluctuations are computed from an incompressible CFD
solution, then a Green’s function appropriate to the problem geometry (as opposed
to the Green’s function for unbounded space) should be used [89–91].
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derivative is zero over the airfoil and shows that under some conditions, usu-
ally satisfied in TE noise generation, this is the appropriate Green’s function
for acoustic calculations. It is obvious that this question of the selection of
the Green’s function for the TE noise prediction does not appear if one uses
compressible turbulence simulation.

Brooks and Burley [85] have proposed and implemented models of several
mechanisms of rotor high-frequency broadband noise prediction in the NASA
Langley’s TiltRotor Aeroacoustic Codes (TRAC) system [92, 93]. The noise
spectra of all these models are based on the results of Ffowcs Williams and
Hall [94] in Mach number dependence and spectral attenuation. They also
depend on a function of several variables such as Strouhal number, various
Reynolds numbers and the Mach number. These authors are attempting to
compute the high-frequency broadband rotor noise in its full complexity for a
rotor operating in the realistic environment of forward flight. The model of TE
noise generation of Ffowcs Williams and Hall is too idealistic for the situation
that Brooks and Burley consider. Nevertheless, it appears that by using several
adjustable degrees of freedom in their models, based on measured aerodynamic
and acoustic data, Brooks and Burley have developed a very useful tool for
the helicopter industry to predict the self noise of helicopter rotors.

A number of researchers have used turbulence simulation for broadband noise
prediction (e.g.,91,95–97). In general, large eddy simulation (LES) of the tur-
bulent eddies is now within reach of acousticians for noise prediction if rel-
atively simple geometries are assumed. However, LES is usually computed
for an incompressible fluid. It is believed that LES resolves the noise gener-
ating eddies over a wide range of length scales in engineering applications.
Reynolds-Averaged Navier-Stokes (RANS) equation-based CFD can not ade-
quately supply the surface pressure fluctuations needed for broadband noise
prediction. Direct numerical simulation (DNS) of turbulence could supply this
information, but is too computationally demanding and uses much more com-
puter resources than LES. The trend in the computation of the unsteady
surface pressure is toward more dependence on LES or DNS of the flow over
the airfoil or blade surface. The inclusion of compressibility in LES and DNS is
highly desirable because it provides a more realistic modeling of wave propaga-
tion in the vicinity of the surface. The prediction of the broadband component
of helicopter rotor noise in forward flight with realistic blade geometry and
kinematics using LES or DNS is not feasible today. We are perhaps a decade
away from reaching this goal.

What are our options to compute the radiated noise once the blade surface
pressure fluctuations are available? (We are assuming that the observer is
not at such a distance that propagation effects such as absorption are impor-
tant.) The current choices are CFD based computational aeroacoustics (CAA)
or the acoustic analogy based on the FW–H equation. The CAA approach
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can be based on finite difference [98] or finite element [99] methods. Both of
these methods require discretization of the space from the source to the ob-
server. The spatial grid size is governed by the smallest acoustic wavelength.
In addition, special absorbing far-field boundary conditions must be used and
numerical stability conditions must be met. Altogether finite difference and
finite element methods use much more computer resources than acoustic anal-
ogy based methods. The FW–H equation with a penetrable data surface has
shown good accuracy and efficiency in the prediction of rotor noise. The re-
cent work of Casper and Farassat [88] has shown that the FW–H equation
can be also used for broadband noise prediction in the time domain (See also
Singer et al. [91]) Two of the most important advantages of the acoustic anal-
ogy approach are: i) the analytic nature of the method allows derivation of a
closed form solution of the FW–H equation satisfying the far-field boundary
condition. The form of the solution can be tailored to the specific problem
for efficiency and accuracy, e.g., formulations 1A and 1B; ii) in general, very
complex geometry and kinematics of the rotor blades can be modeled exactly
rather easily when the acoustic analogy is used. The spatial grid generation of
this problem for finite difference and finite element methods is a very difficult
problem today.

Although both CAA and acoustic analogy approaches will be used in the
future, the authors believe that the acoustic analogy will meet most needs of
design engineers particularly if source kinematics are complex. Semi-empirical
methods such as those proposed by Brooks and Burley will remain important
tools for design engineers at least until compressible turbulence simulation has
reached a mature and reliable stage.

6.4 Ffowcs Williams – Hawkings Equation as a Kirchhoff Formulation

Recently the FW–H equation has been used in a new way for the computation
of rotor noise through the application of the FW–H equation on a permeable
or porous surface. This is an example of the development of an alternative
but equivalent source description. In rotor noise prediction, the surface f = 0
has usually been assumed to be coincident with the rotor blade surface and
impenetrable (un = vn). A relaxation of that assumption is useful because
it enables consideration of either conveniently placed fictitious surfaces or
physical surfaces that permit flow through them.

For a permeable surface (fictitious or physical), equation (18) is the appro-
priate expression of the FW–H equation. It is clear from both the original
Ffowcs Williams and Hawkings paper [11] and later work [100, Chapter 11,
Sec 10] that Ffowcs Williams understood the value of using equation (18)
on a permeable surface. Recently di Francescantonio [101] implemented this
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form of the FW–H equation for rotor noise prediction. At nearly the same
time, Brentner and Farassat [102] demonstrated the relationship between the
FW–H equation and the Kirchhoff equation for moving surfaces. Many others
have followed suit by quickly adopting the use of the FW–H equation on a
permeable surface [103–105].

One question to be considered is “What is the advantage of a fictitious surface
that is not coincident with the physical body?” Although it may not be im-
mediately obvious from equations (18) or (19), any physical acoustic sources
enclosed by the f = 0 surface only contribute through the surface-source
terms. Any physical sources of sound or propagation effects outside f = 0
contribute through the volume source term. Hence, if we can enclose all physi-
cal sources inside f = 0 we have no contribution from the volume source—i.e.,
the quadrupole can be legitimately neglected. Without the quadrupole, a sig-
nificant computational savings is realized because the volume integration is
no longer required. Furthermore, the amount of flow-field data required for
a surface integration is much less than that for an integration of the volume
surrounded by the surface.

The key, which enables use of the FW–H equation on a permeable surface, is
the availability of an accurate flow-field description from CFD. Only recently
has CFD matured to a point where it can provide sufficiently accurate, un-
steady flow-field data on the integration surface. Even so, CFD computations
for a rotor in forward flight are extremely demanding. Thus the coupling of
the FW–H equation and CFD provides a mutually beneficial approach to the
computation of noise. The CFD computation only is needed in the acous-
tic source region—not all the way to the observer—and the FW–H equation
provides an efficient method to predict the sound field away from the source
region. Through the use of the permeable surface formulation of the FW–H
equation, the acoustic calculations can be made computationally efficient even
for complicated, nonlinear acoustic sources.

To demonstrate the robustness and accuracy of the permeable surface appli-
cation of the FW–H equation, a comparison between the predicted acoustic
pressure and experiment for a hovering rotor is shown in figure 17. In the
figure, the result for a WOPWOP+ (subsonic quadrupole) prediction is also
shown. The same CFD calculation was utilized for the input data for both
predictions. Two permeable surface FW–H computations are show in figure [Fig. 17

about
here.]17. First, an integration surface coincident with the rotor blade is used to

predict thickness and loading noise. Second, an integration surface located
approximately 1.5 chord lengths away from the blade is used to predict the
total noise. Note that the thickness noise predictions from WOPWOP+ and
FW–H are identical and there is only a small difference in the predicted load-
ing noise. The total noise, which includes the effects of the quadrupole, is also
in very close agreement even though the volume used in WOPWOP+ is not
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identical to the region enclosed in the FW–H permeable-surface integration.

6.4.1 Problems with the Kirchhoff Formulation

The Kirchhoff formulation for moving surfaces is an alternative formulation
that has been used for rotor noise prediction over the past decade. The Kirch-
hoff formulation gained rapid acceptance shortly after its publication by Faras-
sat and Myers in 1988 [106] precisely because it appeared to offer the same
benefits just presented for the permeable-surface application of the FW–H
equation. Nevertheless, recent work by Brentner and Farassat [102] and Singer
et al. [91] have shown that the Kirchhoff formulation is unreliable for aeroa-
coustic problems in practice. This observation is sufficiently important that
some explanation is desirable.

An embedding procedure similar to that used to derive the FW–H equation
above was applied to the wave equation by Farassat and Myers to derive the
Kirchhoff formulation for moving surfaces. The generalized wave equation,
which is the governing equation for the Kirchhoff formulation, becomes
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where Mn = vn/c. In this equation p′ must be compatible with the wave
equation: hence, equation (57) is valid only in the region of the fluid in which
the wave equation is the appropriate governing equation.

Through the utilization of the continuity and momentum equations we can
rewrite the permeable surface form of the FW–H equation (18), as
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This form of the FW–H equation highlights the differences between the Kirch-
hoff formulation and the FW–H equation. Notice that all the additional source
terms in equation (58) are second-order terms in perturbation quantities out-
side of the source region (i.e., p′ − c2ρ′ ¿ 1 and ρuiuj ¿ 1). For linear wave
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propagation, each of these terms would be identically zero and the Kirchhoff
formulation and the FW–H equation would be in complete agreement. In other
words, if the input data identically satisfies the wave equation, then the FW–H
equation and Kirchhoff equation for a moving surface are identical—but this is
seldom the situation in practice where CFD results are used as input data. 17

A more detailed comparison and discussion are found in ref. 102. [Fig. 18
about
here.]

To illustrate how the Kirchhoff formulation can give misleading results, con-
sider a series of cylindrical integration surfaces that enclose a hovering rotor
blade, as shown in figure 18. In figure 19, the acoustic pressure for an in-plane
observer has been computed using both the FW–H equation and the Kirchhoff
formulation for each of the integration surfaces. Both methods agree reason-
ably well with the data when the integration surfaces are more than about
0.7 chords from the blade surface. The predicted acoustic pressure from the
Kirchhoff computations for integration surfaces that are closer to the blade
are unrealistic. In contrast, the acoustic pressure predicted by the FW–H
equation is well behaved and is modified only by the fact that not all of the
“quadrupole” noise source is included when the integration surface is too close
to the blade and the volume source term in equation (18) has been neglected.

A second example illustrates another problem that can occur with the Kirch-
hoff formulation. In this case, consider the viscous flow past a circular cylinder,
as shown in figure 20. In this situation it is expected that the vortices shed
by cylinder have a very small contribution to the sound produced, hence the
acoustic signal should be relatively unaffected by the placement of the inte-
gration surface. Figure 21 shows that this is indeed the case for the FW–H
computation, but the Kirchhoff computation is entirely erroneous. This ex-
ample is significant for rotor noise prediction because rotor wakes inevitably
must pass through the integration surface. [Fig. 19

about
here.]

[Fig. 20
about
here.]

These two examples demonstrate numerically that the Kirchhoff formulation
is not reliable for rotor noise prediction. Fortunately, from a computational
point of view, there is very little difference between the methods. All of the
computational advantages originally sought from the Kirchhoff method are
available using the FW–H equation. Furthermore, all of the physical insight
that the FW–H equation traditionally has provided is also still available.

6.5 Vehicle Noise Prediction

As the models for aerodynamically generated sound have been developed and
become more accurate and sophisticated, some effort has shifted to consider-

17 Generally the input data is the solution to the Navier–Stokes or Euler equations
rather than the wave equation.
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ation of the rotorcraft as a vehicle rather than just as a collection of inde-
pendent, isolated rotors. Until recently, the individual noise sources from the
rotor have been treated separately—with only minimal recognition that real
rotorcraft have a fuselage that can interact with both the flow and acoustic ra-
diation. Furthermore, real rotorcraft maneuver along sometimes complicated
flight paths to perform their mission. These aspects of rotorcraft flight can
have a significant impact upon the radiated noise. Ultimately a complete sys-
tem noise prediction needs to include the effects of acoustic scattering and
maneuver. These topics are discussed in the following subsections.

6.5.1 Acoustic Scattering

Rarely in the development of aeroacoustic noise models is the rotorcraft fuse-
lage taken into account. The fuselage acts as a scattering body in the path
of noise propagation. In general, the fuselage can cause reflections, scattering,
diffraction and shielding of the sound – depending on the observer location.
The rotor blade passage frequency (BPF) is generally low for rotorcraft, hence
the wavelength of the low-frequency noise is quite large compared to the phys-
ical dimensions of the fuselage cross section and the influence of the body is
minimal. Impulsive noise contains a much higher frequency content, thus the
fuselage is a much more efficient scatterer of BVI and HSI noise. Furthermore,
the location of BVI and HSI noise generation is in the main rotor disk and
many observer positions below the helicopter are shielded by the fuselage. The
tail rotor, which typically operates with a BPF that is significantly higher than
the main rotor, also generates noise that is subject to scattering and shielding
by the fuselage but it is less affected because of its position at the extreme
rear of the helicopter.

Atalla and Glegg [107, 108] used a ray-acoustics approach to study the fuse-
lage scattering of helicopter rotor noise. Their method was a combination of
classical geometrical acoustics and the paraxial ray approximation with BVI
modeled by a rotating point source. The primary effect of scattering of ro-
tor noise was to cause a secondary acoustic pulse of smaller amplitude than
the direct pulse – the phase and amplitude of which were highly dependent
upon observer position. Any such additions to the acoustic signal clearly will
modify both the amplitude and directivity of the acoustic field at the mea-
surement locations. Atalla and Glegg also observed another important effect
for the case of a simplified tiltrotor geometry (see figure 22). In this case, an
additional impulse in the acoustic pressure signal was observed at some lo-
cations because the fuselage blocks the acoustic rays from the source during
part of the motion of the source but not all of it. As the source appears from
behind the body, the acoustic signal is heard and creates the extra impulse
shown in figure 23. The impulse shown in figure 23 is exaggerated because the
ray-acoustic method does not account for diffraction, nevertheless, this exam-
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ple emphasizes an important modification of the acoustic field—neglected in
a free-field noise computation—is possible. Atalla and Glegg’s work does not
clearly show whether or not these effects will be strong for a real helicopter. [Fig. 21

about
here.]

[Fig. 22
about
here.]

The ray acoustics approach to the scattering problem has the drawback that
the method fails in the shadow zone where diffraction effects are important.
Furthermore, the method is somewhat complicated to use when the scattering
body does not have a simple geometry. To overcome these limitations, Chung
and Morris [109,110] developed a computational approach they have called the
impedance mismatch method (IMM). The linear Euler equations are solved for
wave propagation using high-accuracy finite difference algorithms. The IMM
simplifies the implementation of a solid wall boundary condition by setting
the acoustic impedance of the fluid to a different value inside of the scattering
body. This impedance difference results in reflected and transmitted waves
with appropriate amplitudes. The primary advantage of this approach is that
a simple Cartesian grid can be used to model the computational domain even
for complex geometries. Thus high-order finite difference schemes, suitable for
computational aeroacoustics (CAA), can be readily used.

Laik and Morris [111] modified the IMM such that the acoustic field is sep-
arated into incident and scattered fields. This separation is valuable because
the incident field can be obtained from an analytical solution or a numerical
prediction scheme such as WOPWOP without propagating the incident field
throughout the finite-difference grid. Agarwal and Morris [112] used the mod-
ified IMM methodology to compute the acoustic near-field around a realistic
rotorcraft fuselage model. The directivity of the acoustic field was changed sig-
nificantly by the presence of the fuselage. Although Morris and his coworkers
have yet to use an incident field from a numerical prediction (such as WOP-
WOP), this is needed to quantify the amount of scattering and diffraction
present in wind tunnel and flight test data.

6.5.2 Maneuvering Rotorcraft

The problem of the prediction of noise for a rotorcraft in a maneuver, poses a
daunting and largely unaddressed challenge. In both civil and military oper-
ations, maneuvering flight is essential for a rotorcraft to perform its intended
mission. Nevertheless, current rotor-noise-prediction methods have not until
recently addressed even the simplest maneuvers, such as accelerating and de-
celerating flight in rectilinear motion. Aircraft motions—such as pitch, roll,
or yaw motions—cause significant time-dependent shifts in the noise directiv-
ity. Furthermore, transient maneuvers can generate a substantial increase in
the noise radiation due to both kinematic and aerodynamic effects. Recently
Gopalan et al. [113] have developed a method to predict the first-order ef-
fects of acceleration (deceleration) parallel to the flight path. Janakiram and
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Khan [114] have performed a detailed state-of-the-art prediction and valida-
tion for a helicopter in descending and decelerating flight. In both of these
works, quasisteady analyses (i.e., predictions for a series of steady trim states
made at several points along the flight path) were used for flight conditions
where the aircraft state varied along a straight flight path. Aircraft accelera-
tion was included in the trim computation, but it was not represented in the
noise prediction directly.

Recently, Brentner and Jones [115] provided an initial demonstration of the
importance of both steady and transient maneuvers for a notional helicopter.
As an example of a steady maneuver, they compared the noise of level and
turning flight on a plane 100 ft below the helicopter for a moderate forward
speed of 120 knots. The turn radius and turn rate were 1160.5 ft and 10
deg/sec, respectively, for both the right and left turns. The aircraft attitude
and blade loads 18 were computed by CAMRAD 2 [116]. Figure 24 shows a
comparison of the OASPL contours for level and turning flight. The small
circle in the center of the contour plot represents the projection of the main
rotor disk onto the measurement plane. It is interesting that the turning flight
peak OASPL levels are as much as 10 decibels (dB) higher than the level flight
case. This is a result of the significant increase in rotor loading required for
turning flight. Although loading is nearly the same for left and right turns,
there is a significant difference in the OASPL directivity of the right and left
turns. This difference is related to both the tail rotor thrust and rotation
direction of the main rotor. [Fig. 23

about
here.]

Brentner et al. [55,115,117] also demonstrated the potential for increased noise
in a transient maneuver. They considered a notional helicopter originally in a
3 deg. descent that is arrested by a momentary increase in collective pitch. The
collective pitch used in the maneuver is shown in figure 25 and the resulting
aircraft position is shown in figure 26. This arrested descent maneuver (also
known as a pull up) is a fairly aggressive maneuver—the peak deceleration
is 1.7 g. During the maneuver, blade motion and loading are not periodic
and are different for each blade. Figure 27 show the acoustic pressure time
history for two observer locations below the helicopter. Although the peak
blade loading is nearly doubled, the acoustic pressure is increased by 3 to 5
times depending upon the observer location. The amount of increase in noise
is highly dependent upon the observer position. Brentner et al. [117] computed
the directivity of the noise during the arrested descent maneuver, shown in
figure 28. In this figure, contours of OASPL for both the steady 3 deg. descent
case and the transient arrested descent are compared at several times. At
the beginning and end of the maneuver the noise levels are essentially the
same, but during the maneuver, the OASPL is increased by 12 dB at some

18 Blade-vortex interactions were not fully resolved in the CAMRAD 2 computa-
tions.
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locations in the field. This tremendous increase in noise levels is due to both
the temporary increase in blade loading and other transient effects. More
details about these computations can be found in refs. 55, 115, 117–119. A
more thorough analysis is needed to determine whether or not such increases
are likely for specific real maneuvers—especially if blade-vortex interaction is
involved. [Fig. 24
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[Fig. 25
about
here.]

[Fig. 26
about
here.]

[Fig. 27
about
here.]

These examples show that the noise of a rotorcraft in maneuvering flight can
be considerably different than that for the same rotorcraft in a steady flight
condition. Nevertheless, these are early computations and much more work
needs to be done. In the present computations, blade-vortex interactions have
been inadequately resolved. Given the difficulty of steady free-wake computa-
tions, the maneuver wake problem will likely be even more difficult. Another
problem that is an issue for maneuvering flight is that the time scale for a ma-
neuver calculation is much longer than that for steady flight. This difference
can be computationally quite significant.

7 Concluding Remarks

In the last several years significant progress has been made in the development
of effective noise prediction models for helicopter main rotor noise. Advances
have been made on all fronts: BVI noise is well understood and can be pre-
dicted, but aerodynamic loads computations are challenging and more under-
standing of the rotor wake and tip vortices is needed. HSI noise prediction has
reached and advanced state because there was an immediate need for an effi-
cient HSI noise prediction tool. New advances have been made in broadband
noise prediction and it appears that even more rigorous methods are on the
horizon. The FW–H equation has proven to be a fruitful source of integral
formulations and the desire to avoid the computation of the quadrupole noise
altogether has lead to the use of the FW–H equation on permeable surfaces.
The permeable-surface FW–H equation actually embodies all of HSI predic-
tion methods because the full formulation still includes the quadrupole outside
of the integration surface. It has also been demonstrated that the Kirchhoff
formulation, while suitable for acoustic problems, can be unreliable for aeroa-
coustics. Fortunately the FW–H equation is equally efficient and much more
robust.

Although this article has not dealt directly with rotorcraft aerodynamic com-
putations, it should be pointed out that the acoustic formulations discussed
require highly accurate solutions—both spatially and temporally—as input
data. The current aerodynamic state-of-the-art for even simple rotor config-
urations is at best “relatively good.” The aerodynamic calculations required
for HSI noise in forward flight are extremely challenging. An accurate, first-
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principles, blade-vortex interaction computation is still beyond the ability of
present day CFD, but many researchers are attacking the problem. Full vehicle
and maneuver noise computations may be even more challenging. Neverthe-
less, progress is being made and the acoustic propagation theory and codes
will be up to the task.
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Fig. 1. A schematic of the complicated aeromechanical environment in which a
helicopter rotor operates.
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Fig. 11. Schematic of blade-vortex interaction.
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Fig. 12. Comparison of measured and predicted noise for a four-bladed Sikorsky
model rotor. The microphone location for this comparison was nominally 25◦ below
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This is a descent condition, µ = .152 and CT /σ = .07, which corresponds to figure
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Fig. 13. Schematic of the TiltRotor Aeroacoustic Codes (TRAC) developed at the
NASA Langley Research Center for helicopter and tiltrotor noise prediction [72].
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Fig. 14. A comparison of measured and predicted acoustic pressure time histories
for the BO-105 HART model. For this case, µ = 0.15, CT = 0.0044, MH = 0.64 and
the shaft angle αs = 5.3 deg. The observer is located 2.4 m below and 1.61 m right
of the hub under the advancing side of the rotor. (This is figure 20(a) in ref. [72].)
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Fig. 15. Comparison of sound pressure measurement and predictions on the ad-
vancing side of a JVX tiltrotor model operating in hover. For this case, µ = 0.17,
CT = 0.00984, MH = 0.64 and the shaft angle αs = 3.15 deg. The observer is
located 1.512 m below, 1.372 m forward and 0.711 m right of the rotor hub. (This
is a combination of figures 27 and 32 in ref. [72]. See refs. [72] and [73] for more
details, including wind tunnel flow corrections.) (a) measured, (b) predicted—with
roll-up model, (c) predicted—no roll-up model.
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Fig. 17. Comparison of noise components predicted by the FW–H/RKIR and WOP-
WOP+ codes for a hovering UH-1H model rotor (MH = 0.88, inplane observer 3.4R
from rotor hub).
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Fig. 18. Concentric cylindrical integration surfaces used for noise computation for
a hovering rotor.
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Fig. 19. Predicted acoustic pressure for various integration surface locations for
an observer located 3.4R from a UH-1H model rotor hovering at MH = 0.88. The
experimental data ( ) is from ref. 65. (a) FW–H prediction; (b) Kirchhoff prediction
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Fig. 20. Vorticity field computed from CFD. FW–H integration surfaces are at
r = 0.5D, r = 1.5D, r = 2.5D and r = 5.1D
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Fig. 21. Acoustic signals computed for various integration surfaces that correspond
to those indicated in Figure 20.

82



No rays from 

this sector 


are specularily 

reflected

Direct ray

Boundary ray of 

the illuminated region

fuselage

cross section

rotating point source

Fig. 22. Geometry of simple tiltrotor model which results in an additional impulse
in the acoustic pressure time history [107].
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Fig. 23. Steady loading noise from a rotating steady point force near a rigid body
(idealized tiltrotor model). (a) free-field, (b) near a rigid box. The source Mach
number is M = 0.7 and the observer is in far-field 45 deg. below and on the right
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Fig. 24. Comparison of main-rotor noise overall sound pressure levels in level and
turning flight [115]. (a) left turn, (b) level flight, (c) right turn; The flight direction
is toward the top of the figure.
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Fig. 25. Collective pitch control during arrested descent maneuver [55].
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Fig. 26. Aircraft position during arrested descent maneuver [55]. The aircraft was
at x = (0., 0., 0.) at t = 0 s.
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Fig. 27. Comparison of acoustic pressure time history for a three-degree steady
descent ( ) and an arrested descent maneuver (—— ). (a) observer located 100
ft below the helicopter at t = 0 (from ref. [55])(b) observer located at 100 ft below,
100 ft to the right and 100 ft forward of the helicopter at t = 0 (from ref. [117])
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